BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25575136)

  • 1. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus.
    Koeppen AH; Ramirez RL; Becker AB; Feustel PJ; Mazurkiewicz JE
    J Neuropathol Exp Neurol; 2015 Feb; 74(2):166-76. PubMed ID: 25575136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cerebellar component of Friedreich's ataxia.
    Koeppen AH; Davis AN; Morral JA
    Acta Neuropathol; 2011 Sep; 122(3):323-30. PubMed ID: 21638087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine and GABA(A) receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters.
    Geiman EJ; Zheng W; Fritschy JM; Alvarez FJ
    J Comp Neurol; 2002 Mar; 444(3):275-89. PubMed ID: 11840480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friedreich ataxia: neuropathology revised.
    Koeppen AH; Mazurkiewicz JE
    J Neuropathol Exp Neurol; 2013 Feb; 72(2):78-90. PubMed ID: 23334592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins.
    Koeppen AH; Michael SC; Knutson MD; Haile DJ; Qian J; Levi S; Santambrogio P; Garrick MD; Lamarche JB
    Acta Neuropathol; 2007 Aug; 114(2):163-73. PubMed ID: 17443334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus.
    Koeppen AH; Ramirez RL; Yu D; Collins SE; Qian J; Parsons PJ; Yang KX; Chen Z; Mazurkiewicz JE; Feustel PJ
    Cerebellum; 2012 Dec; 11(4):845-60. PubMed ID: 22562713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart and Nervous System Pathology in Compound Heterozygous Friedreich Ataxia.
    Becker AB; Qian J; Gelman BB; Yang M; Bauer P; Koeppen AH
    J Neuropathol Exp Neurol; 2017 Aug; 76(8):665-675. PubMed ID: 28789479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual synaptic inhibitions of brainstem neurons by GABA and glycine with impact on Rett syndrome.
    Xing H; Cui N; Johnson CM; Faisthalab Z; Jiang C
    J Cell Physiol; 2021 May; 236(5):3615-3628. PubMed ID: 33169374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice.
    Garin N; Hornung JP; Escher G
    J Comp Neurol; 2002 Jun; 447(3):210-7. PubMed ID: 11984816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of inhibitory and excitatory synaptic transmission in rat inferior colliculus after unilateral cochleectomy: an in situ and immunofluorescence study.
    Argence M; Saez I; Sassu R; Vassias I; Vidal PP; de Waele C
    Neuroscience; 2006 Sep; 141(3):1193-207. PubMed ID: 16757119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A shared vesicular carrier allows synaptic corelease of GABA and glycine.
    Wojcik SM; Katsurabayashi S; Guillemin I; Friauf E; Rosenmund C; Brose N; Rhee JS
    Neuron; 2006 May; 50(4):575-87. PubMed ID: 16701208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyper-Formation of GABA and Glycine Co-Releasing Terminals in the Mouse Cerebellar Nuclei after Deprivation of GABAergic Inputs from Purkinje Cells.
    Kobayashi S; Kim J; Yanagawa Y; Suzuki N; Saito H; Takayama C
    Neuroscience; 2020 Feb; 426():88-100. PubMed ID: 31846755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord.
    Shimizu-Okabe C; Kobayashi S; Kim J; Kosaka Y; Sunagawa M; Okabe A; Takayama C
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellar pathology in Friedreich's ataxia: atrophied dentate nuclei with normal iron content.
    Solbach K; Kraff O; Minnerop M; Beck A; Schöls L; Gizewski ER; Ladd ME; Timmann D
    Neuroimage Clin; 2014; 6():93-9. PubMed ID: 25379420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-localisation of markers for glycinergic and GABAergic neurones in rat nucleus of the solitary tract: implications for co-transmission.
    Batten TF; Pow DV; Saha S
    J Chem Neuroanat; 2010 Oct; 40(2):160-76. PubMed ID: 20434539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical study on the distribution and origin of GABAergic nerve terminals in the superior salivatory nucleus.
    Matsushima A; Ichikawa H; Fujita M; Mitoh Y; Kobashi M; Yamashiro T; Matsuo R
    J Med Invest; 2009; 56 Suppl():264-6. PubMed ID: 20224197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor alpha3 subunit gene.
    Rajalu M; Müller UC; Caley A; Harvey RJ; Poisbeau P
    Eur J Neurosci; 2009 Dec; 30(12):2284-92. PubMed ID: 20092571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia.
    Ward PGD; Harding IH; Close TG; Corben LA; Delatycki MB; Storey E; Georgiou-Karistianis N; Egan GF
    Mov Disord; 2019 Mar; 34(3):335-343. PubMed ID: 30624809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous distribution of glycinergic and GABAergic afferents on an identified central neuron.
    Triller A; Sur C; Korn H
    J Comp Neurol; 1993 Dec; 338(1):83-96. PubMed ID: 8300901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycinergic transmission shaped by the corelease of GABA in a mammalian auditory synapse.
    Lu T; Rubio ME; Trussell LO
    Neuron; 2008 Feb; 57(4):524-35. PubMed ID: 18304482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.