BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25575382)

  • 1. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans.
    Kelly RH; Yancey PH
    Biol Bull; 1999 Feb; 196(1):18-25. PubMed ID: 25575382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of trimethylamine oxide and habitat depth within and among species of teleost fish: an analysis of causation.
    Samerotte AL; Drazen JC; Brand GL; Seibel BA; Yancey PH
    Physiol Biochem Zool; 2007; 80(2):197-208. PubMed ID: 17252516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure.
    Yancey PH; Rhea MD; Kemp KM; Bailey DM
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):371-6. PubMed ID: 15529747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient.
    Yancey PH; Speers-Roesch B; Atchinson S; Reist JD; Majewski AR; Treberg JR
    Physiol Biochem Zool; 2018; 91(2):788-796. PubMed ID: 29315031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated levels of trimethylamine oxide in deep-sea fish: evidence for synthesis and intertissue physiological importance.
    Treberg JR; Driedzic WR
    J Exp Zool; 2002 Jun; 293(1):39-45. PubMed ID: 12115917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts.
    Yancey PH; Fyfe-Johnson AL; Kelly RH; Walker VP; Auñón MT
    J Exp Zool; 2001 Feb; 289(3):172-6. PubMed ID: 11170013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing urea∶trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological depth limit?
    Laxson CJ; Condon NE; Drazen JC; Yancey PH
    Physiol Biochem Zool; 2011; 84(5):494-505. PubMed ID: 21897086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants.
    Yancey PH; Blake WR; Conley J
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):667-76. PubMed ID: 12443924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths.
    Yancey PH; Gerringer ME; Drazen JC; Rowden AA; Jamieson A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4461-5. PubMed ID: 24591588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis.
    Yancey PH; Siebenaller JF
    J Exp Biol; 1999 Dec; 202(Pt 24):3597-603. PubMed ID: 10574736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.
    Brown A; Thatje S
    Biol Rev Camb Philos Soc; 2014 May; 89(2):406-26. PubMed ID: 24118851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digenean parasites of deep-sea teleosts: A progress report.
    Bray RA
    Int J Parasitol Parasites Wildl; 2020 Aug; 12():251-264. PubMed ID: 33101904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the key factors affecting the trimethylamine N-oxide content of teleost fishes collected from the marginal seas of China and the epipelagic zone of the northwest Pacific Ocean.
    Hu Q; Zhao W; Qu K; An N; Li L; Wei Y; Bai Y; Jiang T; Chen J; Dai F; Wang H; Cui Z
    Sci Total Environ; 2023 Nov; 901():165577. PubMed ID: 37467983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMAO and other organic osmolytes in the muscles of amphipods (Crustacea) from shallow and deep water of Lake Baikal.
    Zerbst-Boroffka I; Kamaltynow RM; Harjes S; Kinne-Saffran E; Gross J
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):58-64. PubMed ID: 16139539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bathyal and abyssal demersal bait-attending fauna of the Eastern Mediterranean Sea.
    Linley TD; Craig J; Jamieson AJ; Priede IG
    Mar Biol; 2018; 165(10):159. PubMed ID: 30294008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological disparity as a biodiversity metric in lower bathyal and abyssal gastropod assemblages.
    McClain CR; Johnson NA; Rex MA
    Evolution; 2004 Feb; 58(2):338-48. PubMed ID: 15068350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance and accumulation of trimethylamine oxide by winter skate (Leucoraja ocellata): reliance on low whole animal losses rather than synthesis.
    Treberg JR; Driedzic WR
    Am J Physiol Regul Integr Comp Physiol; 2006 Dec; 291(6):R1790-8. PubMed ID: 16873558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROLE OF UREA AND METHYLAMINES IN BUOYANCY OF ELASMOBRANCHS.
    Withers P; Hefter G; Pang TS
    J Exp Biol; 1994 Mar; 188(1):175-89. PubMed ID: 9317582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypotaurine, N-methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps.
    Yin M; Palmer HR; Fyfe-Johnson AL; Bedford JJ; Smith RA; Yancey PH
    Physiol Biochem Zool; 2000; 73(5):629-37. PubMed ID: 11073799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A source-sink hypothesis for abyssal biodiversity.
    Rex MA; McClain CR; Johnson NA; Etter RJ; Allen JA; Bouchet P; Warén A
    Am Nat; 2005 Feb; 165(2):163-78. PubMed ID: 15729648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.