BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25575382)

  • 21. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.
    Treberg JR; Speers-Roesch B; Piermarini PM; Ip YK; Ballantyne JS; Driedzic WR
    J Exp Biol; 2006 Mar; 209(Pt 5):860-70. PubMed ID: 16481575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic capacity does not predict elasmobranchs' ability to maintain trimethylamine oxide without a dietary contribution.
    Bockus AB; Seibel BA
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Mar; 217():35-42. PubMed ID: 29248570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms.
    Yancey PH; Siebenaller JF
    J Exp Biol; 2015 Jun; 218(Pt 12):1880-96. PubMed ID: 26085665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population differentiation decreases with depth in deep-sea bivalves.
    Etter RJ; Rex MA; Chase MR; Quattro JM
    Evolution; 2005 Jul; 59(7):1479-91. PubMed ID: 16153033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea.
    Brown A; Hauton C; Stratmann T; Sweetman A; van Oevelen D; Jones DOB
    R Soc Open Sci; 2018 May; 5(5):172162. PubMed ID: 29892403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs.
    Forster RP; Goldstein L
    Am J Physiol; 1976 Apr; 230(4):925-31. PubMed ID: 1267026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular responses in marine animals to hydrostatic pressure.
    Yancey PH
    J Exp Zool A Ecol Integr Physiol; 2020 Jul; 333(6):398-420. PubMed ID: 32096337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?
    Treberg JR; Speers-Roesch B
    J Exp Biol; 2016 Mar; 219(Pt 5):615-25. PubMed ID: 26936637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osmotic and ionic hemolymph concentrations of bathyal and abyssal amphipods of Lake Baikal (Siberia) in relation to water depth.
    Zerbst-Boroffka I; Grospietsch T; Mekhanikova I; Takhteev V
    J Comp Physiol B; 2000 Dec; 170(8):615-25. PubMed ID: 11192267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules.
    Tseng HC; Graves DJ
    Biochem Biophys Res Commun; 1998 Sep; 250(3):726-30. PubMed ID: 9784413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cyclic reproductive activity in bathyal and abyssel deep-sea fishes].
    Rannou M
    C R Acad Hebd Seances Acad Sci D; 1975 Oct; 281(14):1023-5. PubMed ID: 813869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species.
    Havermans C; Sonet G; d'Udekem d'Acoz C; Nagy ZT; Martin P; Brix S; Riehl T; Agrawal S; Held C
    PLoS One; 2013; 8(9):e74218. PubMed ID: 24086322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Some peculiarities of brain phospholipids in deep sea fishes].
    Pomazanskaia LF; Pravdina NI; Chirkovskaia EV
    Zh Evol Biokhim Fiziol; 1975; 11(5):520-5. PubMed ID: 1217333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions.
    Macdonald RD; Khajehpour M
    Biophys Chem; 2013 Dec; 184():101-7. PubMed ID: 24216065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal variations of trimethylamine oxide and urea in the blood of a cold-adapted marine teleost, the rainbow smelt.
    Raymond JA
    Fish Physiol Biochem; 1994 May; 13(1):13-22. PubMed ID: 24203267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Some of the most interesting things we know, and don't know, about the biochemistry and physiology of elasmobranch fishes (sharks, skates and rays).
    Ballantyne JS
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Sep; 199():21-28. PubMed ID: 26969804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternating regimes of shallow and deep-sea diversification explain a species-richness paradox in marine fishes.
    Miller EC; Martinez CM; Friedman ST; Wainwright PC; Price SA; Tornabene L
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2123544119. PubMed ID: 36252009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure-adaptive differences in proteolytic inactivation of M4-lactate dehydrogenase homologues from marine fishes.
    Hennessey JP; Siebenaller JF
    J Exp Zool; 1987 Jan; 241(1):9-15. PubMed ID: 3549968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BATHYMETRIC PATTERNS OF BODY SIZE IN DEEP-SEA GASTROPODS.
    Rex MA; Etter RJ; Clain AJ; Hill MS
    Evolution; 1999 Aug; 53(4):1298-1301. PubMed ID: 28565515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.