These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25575414)
1. Accuracy of inverse treatment planning on substitute CT images derived from MR data for brain lesions. Jonsson JH; Akhtari MM; Karlsson MG; Johansson A; Asklund T; Nyholm T Radiat Oncol; 2015 Jan; 10():13. PubMed ID: 25575414 [TBL] [Abstract][Full Text] [Related]
2. Treatment planning of intracranial targets on MRI derived substitute CT data. Jonsson JH; Johansson A; Söderström K; Asklund T; Nyholm T Radiother Oncol; 2013 Jul; 108(1):118-22. PubMed ID: 23830190 [TBL] [Abstract][Full Text] [Related]
3. Assessing the Dosimetric Accuracy of Magnetic Resonance-Generated Synthetic CT Images for Focal Brain VMAT Radiation Therapy. Paradis E; Cao Y; Lawrence TS; Tsien C; Feng M; Vineberg K; Balter JM Int J Radiat Oncol Biol Phys; 2015 Dec; 93(5):1154-61. PubMed ID: 26581151 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: Dose calculation accuracy in substitute CT images. Koivula L; Wee L; Korhonen J Med Phys; 2016 Aug; 43(8):4634. PubMed ID: 27487880 [TBL] [Abstract][Full Text] [Related]
5. Using synthetic CT for partial brain radiation therapy: Impact on image guidance. Morris ED; Price RG; Kim J; Schultz L; Siddiqui MS; Chetty I; Glide-Hurst C Pract Radiat Oncol; 2018; 8(5):342-350. PubMed ID: 29861348 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance-based treatment planning for prostate intensity-modulated radiotherapy: creation of digitally reconstructed radiographs. Chen L; Nguyen TB; Jones E; Chen Z; Luo W; Wang L; Price RA; Pollack A; Ma CM Int J Radiat Oncol Biol Phys; 2007 Jul; 68(3):903-11. PubMed ID: 17544002 [TBL] [Abstract][Full Text] [Related]
7. Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy. Kim J; Glide-Hurst C; Doemer A; Wen N; Movsas B; Chetty IJ Int J Radiat Oncol Biol Phys; 2015 Jan; 91(1):39-47. PubMed ID: 25442341 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer. Christiansen RL; Jensen HR; Brink C Acta Oncol; 2017 Jun; 56(6):787-791. PubMed ID: 28464739 [TBL] [Abstract][Full Text] [Related]
9. MRI-based treatment planning with electron density information mapped from CT images: a preliminary study. Wang C; Chao M; Lee L; Xing L Technol Cancer Res Treat; 2008 Oct; 7(5):341-8. PubMed ID: 18783283 [TBL] [Abstract][Full Text] [Related]
11. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Fu J; Singhrao K; Cao M; Yu V; Santhanam AP; Yang Y; Guo M; Raldow AC; Ruan D; Lewis JH Biomed Phys Eng Express; 2020 Jan; 6(1):015033. PubMed ID: 33438621 [TBL] [Abstract][Full Text] [Related]
12. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Maspero M; Savenije MHF; Dinkla AM; Seevinck PR; Intven MPW; Jurgenliemk-Schulz IM; Kerkmeijer LGW; van den Berg CAT Phys Med Biol; 2018 Sep; 63(18):185001. PubMed ID: 30109989 [TBL] [Abstract][Full Text] [Related]
13. Accuracy and precision of patient positioning for pelvic MR-only radiation therapy using digitally reconstructed radiographs. Kemppainen R; Vaara T; Joensuu T; Kiljunen T Phys Med Biol; 2018 Mar; 63(5):055009. PubMed ID: 29405121 [TBL] [Abstract][Full Text] [Related]
14. Using C-Arm X-ray images from marker insertion to confirm the gold fiducial marker identification in an MRI-only prostate radiotherapy workflow. Gustafsson C; Persson E; Gunnlaugsson A; Olsson LE J Appl Clin Med Phys; 2018 Nov; 19(6):185-192. PubMed ID: 30354010 [TBL] [Abstract][Full Text] [Related]
15. Comparison of manual and automatic MR-CT registration for radiotherapy of prostate cancer. Korsager AS; Carl J; Riis Østergaard L J Appl Clin Med Phys; 2016 May; 17(3):294-303. PubMed ID: 27167285 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group. Wee CW; Sung W; Kang HC; Cho KH; Han TJ; Jeong BK; Jeong JU; Kim H; Kim IA; Kim JH; Kim SH; Kim S; Lee DS; Lee MY; Lim DH; Park HL; Suh CO; Yoon SM; Kim IH Radiat Oncol; 2015 Jul; 10():137. PubMed ID: 26134973 [TBL] [Abstract][Full Text] [Related]
17. Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images. Demol B; Boydev C; Korhonen J; Reynaert N Med Phys; 2016 Dec; 43(12):6557. PubMed ID: 27908187 [TBL] [Abstract][Full Text] [Related]
18. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Kapanen M; Tenhunen M Acta Oncol; 2013 Apr; 52(3):612-8. PubMed ID: 22712634 [TBL] [Abstract][Full Text] [Related]
19. Magnetic resonance imaging based digitally reconstructed radiographs, virtual simulation, and three-dimensional treatment planning for brain neoplasms. Ramsey CR; Oliver AL Med Phys; 1998 Oct; 25(10):1928-34. PubMed ID: 9800700 [TBL] [Abstract][Full Text] [Related]
20. Toward magnetic resonance-only simulation: segmentation of bone in MR for radiation therapy verification of the head. Yu H; Caldwell C; Balogh J; Mah K Int J Radiat Oncol Biol Phys; 2014 Jul; 89(3):649-57. PubMed ID: 24803040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]