These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25575414)
21. MR-based treatment planning in radiation therapy using a deep learning approach. Liu F; Yadav P; Baschnagel AM; McMillan AB J Appl Clin Med Phys; 2019 Mar; 20(3):105-114. PubMed ID: 30861275 [TBL] [Abstract][Full Text] [Related]
22. Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy. Whelan B; Kumar S; Dowling J; Begg J; Lambert J; Lim K; Vinod SK; Greer PB; Holloway L Australas Phys Eng Sci Med; 2015 Dec; 38(4):561-8. PubMed ID: 26337163 [TBL] [Abstract][Full Text] [Related]
23. Multisegmented tangential breast fields: a rational way to treat breast cancer. Gulybán A; Kovács P; Sebestyén Z; Farkas R; Csere T; Karácsonyi G; Dérczy K; Hideghéty K; Esik O Strahlenther Onkol; 2008 May; 184(5):262-9. PubMed ID: 18427757 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans. Neppl S; Landry G; Kurz C; Hansen DC; Hoyle B; Stöcklein S; Seidensticker M; Weller J; Belka C; Parodi K; Kamp F Acta Oncol; 2019 Oct; 58(10):1429-1434. PubMed ID: 31271093 [No Abstract] [Full Text] [Related]
25. Which is the most optimal technique to spare hippocampus?-Dosimetric comparisons of SCRT, IMRT, and tomotherapy. Kothavade V; Jamema SV; Gupta T; Pungavkar S; Upasani M; Juvekar S; Jalali R J Cancer Res Ther; 2015; 11(2):358-63. PubMed ID: 26148600 [TBL] [Abstract][Full Text] [Related]
26. Proton range shift analysis on brain pseudo-CT generated from T1 and T2 MR. Pileggi G; Speier C; Sharp GC; Izquierdo Garcia D; Catana C; Pursley J; Amato F; Seco J; Spadea MF Acta Oncol; 2018 Nov; 57(11):1521-1531. PubMed ID: 29842815 [TBL] [Abstract][Full Text] [Related]
27. MRI-based treatment planning with pseudo CT generated through atlas registration. Uh J; Merchant TE; Li Y; Li X; Hua C Med Phys; 2014 May; 41(5):051711. PubMed ID: 24784377 [TBL] [Abstract][Full Text] [Related]
28. Importance of protocol target definition on the ability to spare normal tissue: an IMRT and 3D-CRT planning comparison for intraorbital tumors. Hein PA; Gladstone DJ; Bellerive MR; Hug EB Int J Radiat Oncol Biol Phys; 2005 Aug; 62(5):1540-8. PubMed ID: 16029816 [TBL] [Abstract][Full Text] [Related]
29. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours. Kristensen BH; Laursen FJ; Løgager V; Geertsen PF; Krarup-Hansen A Radiother Oncol; 2008 Apr; 87(1):100-9. PubMed ID: 18262669 [TBL] [Abstract][Full Text] [Related]
30. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Kazemifar S; McGuire S; Timmerman R; Wardak Z; Nguyen D; Park Y; Jiang S; Owrangi A Radiother Oncol; 2019 Jul; 136():56-63. PubMed ID: 31015130 [TBL] [Abstract][Full Text] [Related]
32. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer. Price RG; Kim JP; Zheng W; Chetty IJ; Glide-Hurst C Int J Radiat Oncol Biol Phys; 2016 Jul; 95(4):1281-9. PubMed ID: 27209500 [TBL] [Abstract][Full Text] [Related]
33. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. Kemppainen R; Suilamo S; Tuokkola T; Lindholm P; Deppe MH; Keyriläinen J Acta Oncol; 2017 Jun; 56(6):792-798. PubMed ID: 28270011 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification. Vandecasteele J; De Deene Y Phys Med Biol; 2013 Sep; 58(18):6241-62. PubMed ID: 23965800 [TBL] [Abstract][Full Text] [Related]
35. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: does IMRT increase the integral dose to normal brain? Hermanto U; Frija EK; Lii MJ; Chang EL; Mahajan A; Woo SY Int J Radiat Oncol Biol Phys; 2007 Mar; 67(4):1135-44. PubMed ID: 17208388 [TBL] [Abstract][Full Text] [Related]
36. Clinical feasibility of a commercially available MRI-only method for radiotherapy treatment planning of the brain. Ranta I; Wright P; Suilamo S; Kemppainen R; Schubert G; Kapanen M; Keyriläinen J J Appl Clin Med Phys; 2023 Sep; 24(9):e14044. PubMed ID: 37345212 [TBL] [Abstract][Full Text] [Related]
37. Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information--potential application for MR-only radiotherapy and attenuation correction in positron emission tomography. Johansson A; Garpebring A; Karlsson M; Asklund T; Nyholm T Acta Oncol; 2013 Oct; 52(7):1369-73. PubMed ID: 23984810 [TBL] [Abstract][Full Text] [Related]
38. Current techniques in three-dimensional CT simulation and radiation treatment planning. Stephenson JA; Wiley AL Oncology (Williston Park); 1995 Nov; 9(11):1225-32, 1235; discussion 1235-40. PubMed ID: 8703693 [TBL] [Abstract][Full Text] [Related]
39. Effects of geometric distortion in 0.2T MRI on radiotherapy treatment planning of prostate cancer. Petersch B; Bogner J; Fransson A; Lorang T; Pötter R Radiother Oncol; 2004 Apr; 71(1):55-64. PubMed ID: 15066296 [TBL] [Abstract][Full Text] [Related]
40. The use of digitally reconstructed radiographs for three-dimensional treatment planning and CT-simulation. Galvin JM; Sims C; Dominiak G; Cooper JS Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):935-42. PubMed ID: 7860409 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]