These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25575997)

  • 1. Phosphite cannot be used as a phosphorus source but is non-toxic for microalgae.
    Loera-Quezada MM; Leyva-González MA; López-Arredondo D; Herrera-Estrella L
    Plant Sci; 2015 Feb; 231():124-30. PubMed ID: 25575997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii.
    Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA
    Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae.
    Kobayashi I; Imamura S; Hirota R; Kuroda A; Tanaka K
    J Gen Appl Microbiol; 2024 Mar; 69(5):287-291. PubMed ID: 37587047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Most probable number quantification of hypophosphite and phosphite oxidizing bacteria in natural aquatic and terrestrial environments.
    Stone BL; White AK
    Arch Microbiol; 2012 Mar; 194(3):223-8. PubMed ID: 22134432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas.
    Changko S; Rajakumar PD; Young REB; Purton S
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):675-686. PubMed ID: 31788712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic utilization of phosphite/phosphine as a sole source of phosphorus: implication to growth in the Jovian environment.
    Foster TL; Winans L
    Life Sci Space Res; 1977; 15():81-6. PubMed ID: 12596811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress.
    Wang Y; Yu J; Wang P; Deng S; Chang J; Ran Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5762-5770. PubMed ID: 29230652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Bisphenol A on the microalga Chlamydomonas reinhardtii and the clam Corbicula fluminea.
    Esperanza M; Seoane M; Servia MJ; Cid Á
    Ecotoxicol Environ Saf; 2020 Jul; 197():110609. PubMed ID: 32302859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Phosphite Oxidation and Its Potential Role in the Global Phosphorus and Carbon Cycles.
    Figueroa IA; Coates JD
    Adv Appl Microbiol; 2017; 98():93-117. PubMed ID: 28189156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp.
    Batyrova K; Gavrisheva A; Ivanova E; Liu J; Tsygankov A
    Int J Mol Sci; 2015 Jan; 16(2):2705-16. PubMed ID: 25629229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae.
    Loera-Quezada MM; Leyva-González MA; Velázquez-Juárez G; Sanchez-Calderón L; Do Nascimento M; López-Arredondo D; Herrera-Estrella L
    Plant Biotechnol J; 2016 Oct; 14(10):2066-76. PubMed ID: 27007496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2019 May; 210():117-128. PubMed ID: 30849631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88.
    Metcalf WW; Wolfe RS
    J Bacteriol; 1998 Nov; 180(21):5547-58. PubMed ID: 9791102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand.
    Adams NBP; Robertson AJ; Hunter CN; Hitchcock A; Bisson C
    Sci Rep; 2019 Jul; 9(1):10231. PubMed ID: 31308436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.
    Kong QX; Li L; Martinez B; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Jan; 160(1):9-18. PubMed ID: 19507059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.
    Wilson MM; Metcalf WW
    Appl Environ Microbiol; 2005 Jan; 71(1):290-6. PubMed ID: 15640200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K
    Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phosphorus sources on volatile organic compound emissions from Microcystis flos-aquae and their toxic effects on Chlamydomonas reinhardtii.
    Zuo Z; Yang Y; Xu Q; Yang W; Zhao J; Zhou L
    Environ Geochem Health; 2018 Aug; 40(4):1283-1298. PubMed ID: 29264818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus.
    Hu C; Luo Q; Huang Q
    Environ Toxicol Chem; 2014 May; 33(5):1129-34. PubMed ID: 24464740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii.
    Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H
    Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.