These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958 [TBL] [Abstract][Full Text] [Related]
11. Zeta Potential Changing Polyphosphate Nanoparticles: A Promising Approach To Overcome the Mucus and Epithelial Barrier. Akkus ZB; Nazir I; Jalil A; Tribus M; Bernkop-Schnürch A Mol Pharm; 2019 Jun; 16(6):2817-2825. PubMed ID: 31070926 [TBL] [Abstract][Full Text] [Related]
12. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. Shahnaz G; Vetter A; Barthelmes J; Rahmat D; Laffleur F; Iqbal J; Perera G; Schlocker W; Dünnhaput S; Augustijns P; Bernkop-Schnürch A Int J Pharm; 2012 May; 428(1-2):164-70. PubMed ID: 22421322 [TBL] [Abstract][Full Text] [Related]
13. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Giovino C; Ayensu I; Tetteh J; Boateng JS Int J Pharm; 2012 May; 428(1-2):143-51. PubMed ID: 22405987 [TBL] [Abstract][Full Text] [Related]
14. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. Zhang Y; Xiong M; Ni X; Wang J; Rong H; Su Y; Yu S; Mohammad IS; Leung SSY; Hu H ACS Appl Mater Interfaces; 2021 Apr; 13(15):18077-18088. PubMed ID: 33830730 [TBL] [Abstract][Full Text] [Related]
15. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. Sheng J; Han L; Qin J; Ru G; Li R; Wu L; Cui D; Yang P; He Y; Wang J ACS Appl Mater Interfaces; 2015 Jul; 7(28):15430-41. PubMed ID: 26111015 [TBL] [Abstract][Full Text] [Related]
16. Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. Lee JY; Chung SJ; Cho HJ; Kim DD Eur J Pharm Biopharm; 2015 Aug; 94():532-41. PubMed ID: 26149228 [TBL] [Abstract][Full Text] [Related]
17. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Umerska A; Corrigan OI; Tajber L Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822 [TBL] [Abstract][Full Text] [Related]
18. Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Suchaoin W; Pereira de Sousa I; Netsomboon K; Lam HT; Laffleur F; Bernkop-Schnürch A Int J Pharm; 2016 Aug; 510(1):255-62. PubMed ID: 27329673 [TBL] [Abstract][Full Text] [Related]
19. Interactions of microbicide nanoparticles with a simulated vaginal fluid. das Neves J; Rocha CM; Gonçalves MP; Carrier RL; Amiji M; Bahia MF; Sarmento B Mol Pharm; 2012 Nov; 9(11):3347-56. PubMed ID: 23003680 [TBL] [Abstract][Full Text] [Related]
20. Poly(lactic acid) nanoparticles coated with combined WGA and water-soluble chitosan for mucosal delivery of β-galactosidase. Sheng Y; He H; Zou H Drug Deliv; 2014 Aug; 21(5):370-8. PubMed ID: 24797098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]