These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25576408)

  • 1. Natural organic matter alters size-dependent effects of nanoCuO on the feeding behaviour of freshwater invertebrate shredders.
    Pradhan A; Geraldes P; Seena S; Pascoal C; Cássio F
    Sci Total Environ; 2015 Dec; 535():94-101. PubMed ID: 25576408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer.
    Pradhan A; Seena S; Pascoal C; Cássio F
    Chemosphere; 2012 Nov; 89(9):1142-50. PubMed ID: 22749936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic biomarkers can portray nanoCuO-induced oxidative and neuronal stress in freshwater shredders.
    Pradhan A; Silva CO; Silva C; Pascoal C; Cássio F
    Aquat Toxicol; 2016 Nov; 180():227-235. PubMed ID: 27744167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams.
    Pradhan A; Seena S; Dobritzsch D; Helm S; Gerth K; Dobritzsch M; Krauss GJ; Schlosser D; Pascoal C; Cássio F
    Sci Total Environ; 2014 Jan; 466-467():556-63. PubMed ID: 23955249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and functional responses of stream invertebrate shredders to post-wildfire contamination.
    Pradhan A; Carvalho F; Abrantes N; Campos I; Keizer JJ; Cássio F; Pascoal C
    Environ Pollut; 2020 Dec; 267():115433. PubMed ID: 32866871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicity of nanoparticles of CuO and ZnO in natural water.
    Blinova I; Ivask A; Heinlaan M; Mortimer M; Kahru A
    Environ Pollut; 2010 Jan; 158(1):41-7. PubMed ID: 19800155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waterborne and diet-related effects of inorganic and organic fungicides on the insect leaf shredder Chaetopteryx villosa (Trichoptera).
    Konschak M; Zubrod JP; Baudy P; Englert D; Herrmann B; Schulz R; Bundschuh M
    Aquat Toxicol; 2019 Jan; 206():33-42. PubMed ID: 30445370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum.
    Zubrod JP; Baudy P; Schulz R; Bundschuh M
    Aquat Toxicol; 2014 May; 150():133-43. PubMed ID: 24674876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of copper and dissolved organic matter on sodium uptake, copper bioaccumulation, and oxidative stress in juvenile freshwater mussels (Lampsilis siliquoidea).
    Giacomin M; Gillis PL; Bianchini A; Wood CM
    Aquat Toxicol; 2013 Nov; 144-145():105-15. PubMed ID: 24177213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uranium toxicity to aquatic invertebrates: A laboratory assay.
    Bergmann M; Sobral O; Pratas J; Graça MAS
    Environ Pollut; 2018 Aug; 239():359-366. PubMed ID: 29674214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invertebrates control metal/metalloid sequestration and the quality of DOC/DON released during litter decay in slightly acidic environments.
    Schaller J; Machill S
    Environ Sci Pollut Res Int; 2012 Nov; 19(9):3942-9. PubMed ID: 22645006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna.
    Gaiser BK; Biswas A; Rosenkranz P; Jepson MA; Lead JR; Stone V; Tyler CR; Fernandes TF
    J Environ Monit; 2011 May; 13(5):1227-35. PubMed ID: 21499624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing toxicity of nanoparticles using Brachionus manjavacas (Rotifera).
    Snell TW; Hicks DG
    Environ Toxicol; 2011 Apr; 26(2):146-52. PubMed ID: 19760615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of natural organic matter (NOM) quality on Cu-gill binding in the rainbow trout (Oncorhynchus mykiss).
    Gheorghiu C; Smith DS; Al-Reasi HA; McGeer JC; Wilkie MP
    Aquat Toxicol; 2010 May; 97(4):343-52. PubMed ID: 20207428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and softwater.
    Matsuo AY; Playle RC; Val AL; Wood CM
    Aquat Toxicol; 2004 Oct; 70(1):63-81. PubMed ID: 15451608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs?
    Pradhan A; Fernandes M; Martins PM; Pascoal C; Lanceros-Méndez S; Cássio F
    Sci Total Environ; 2021 May; 769():144576. PubMed ID: 33482552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invertebrates control metals and arsenic sequestration as ecosystem engineers.
    Schaller J; Weiske A; Mkandawire M; Dudel EG
    Chemosphere; 2010 Mar; 79(2):169-73. PubMed ID: 20132960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper.
    Jorge MB; Loro VL; Bianchini A; Wood CM; Gillis PL
    Aquat Toxicol; 2013 Jan; 126():137-47. PubMed ID: 23183413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a biopolymer nanoparticle-based method of oral toxicity testing in aquatic invertebrates.
    Gott RC; Luo Y; Wang Q; Lamp WO
    Ecotoxicol Environ Saf; 2014 Jun; 104():226-30. PubMed ID: 24726933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.