BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25576420)

  • 1. Response of ligninolytic macrofungi to the herbicide atrazine: dose-response bioassays.
    Cupul WC; Abarca GH; Vázquez RR; Salmones D; Hernández RG; Gutiérrez EA
    Rev Argent Microbiol; 2014; 46(4):348-57. PubMed ID: 25576420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions.
    Tekere M; Zvauya R; Read JS
    J Basic Microbiol; 2001; 41(2):115-29. PubMed ID: 11441459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of bezafibrate, gemfibrozil, indomethacin, sulfamethoxazole, and diclofenac removal by ligninolytic enzymes.
    Camarillo Ravelo D; Loera Corral O; González-Martínez I; Chan Cupul W; Rodríguez Nava CO
    Prep Biochem Biotechnol; 2020; 50(6):592-597. PubMed ID: 32003284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ligninolytic enzyme production by white rot fungi during paraquat (herbicide) degradation].
    Camacho-Morales RL; Gerardo-Gerardo JL; Guillén Navarro K; Sánchez JE
    Rev Argent Microbiol; 2017; 49(2):189-196. PubMed ID: 28431786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Immunoenzyme analysis of decomposition of herbicides by soil and wood-rot fungi].
    Koroleva OV; Stepanova EV; Landesman EO; Vasil'chenko LG; Khromonygina VV; Zherdev AV; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2002; 38(4):413-8. PubMed ID: 12325298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains.
    Henn C; Monteiro DA; Boscolo M; da Silva R; Gomes E
    BMC Microbiol; 2020 Aug; 20(1):266. PubMed ID: 32847512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and production of laccases by the ligninolytic fungi, Pleurotus ostreatus and Botryosphaeria rhodina , cultured on basal medium containing the herbicide, Scepter (imazaquin).
    Rezende MI; Barbosa AM; Vasconcelos AF; Haddad R; Dekker RF
    J Basic Microbiol; 2005; 45(6):460-9. PubMed ID: 16304708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of multiple herbicide resistant strain of diazotrophic cyanobacterium, Anabaena variabilis, exposed to atrazine and DCMU.
    Singh S; Datta P; Tirkey A
    Indian J Exp Biol; 2011 Apr; 49(4):298-303. PubMed ID: 21614895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of estrogenic activity of endocrine-disrupting genistein by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Hirai H; Kawai S; Nishida T
    FEMS Microbiol Lett; 2005 Mar; 244(1):93-8. PubMed ID: 15727826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.
    Chan-Cupul W; Heredia-Abarca G; Rodríguez-Vázquez R
    J Environ Sci Health B; 2016; 51(5):298-308. PubMed ID: 26830051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of lignosulphonates by lignin-degrading basidiomycetous fungi.
    Eugenio ME; Carbajo JM; Terrón MC; González AE; Villar JC
    Bioresour Technol; 2008 Jul; 99(11):4929-34. PubMed ID: 17945492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and screening of natural organic matter-degrading fungi.
    Solarska S; May T; Roddick FA; Lawrie AC
    Chemosphere; 2009 May; 75(6):751-8. PubMed ID: 19233448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Consumption of the triazine herbicide atrazine by laccase and laccase-free variants of the soil fungus Mycelia sterilia INBI-2-26].
    Vasil'chenko LG; Khromonygina VV; Koroleva OV; Landesman EO; Gaponenko VV; Kovaleva TA; Kozlov IuP; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2002; 38(5):534-9. PubMed ID: 12391755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii.
    Levin L; Forchiassin F; Ramos AM
    Mycologia; 2002; 94(3):377-83. PubMed ID: 21156508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi.
    Tekere M; Mswaka AY; Zvauya R; Read JS
    Enzyme Microb Technol; 2001 Mar; 28(4-5):420-426. PubMed ID: 11240201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico.
    Cruz Ramírez MG; Rivera-Ríos JM; Téllez-Jurado A; Maqueda Gálvez AP; Mercado-Flores Y; Arana-Cuenca A
    J Environ Manage; 2012 Mar; 95 Suppl():S256-9. PubMed ID: 21074935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Degradation of the herbicide atrazine by the soil mycelial fungus INBI 2-26(-)--a producer of cellobiose dehydrogenase].
    Khromonygina VV; Saltykova AI; Vasil'chenko LG; Kozlov IuP; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2004; 40(3):337-43. PubMed ID: 15283338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi.
    Gill K; Arora S
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):28-33. PubMed ID: 12545383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates.
    Levin L; Melignani E; Ramos AM
    Bioresour Technol; 2010 Jun; 101(12):4554-63. PubMed ID: 20153961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of Coriolus hirsutus laccase on atrazine adsorption and desorption by different types of soil ].
    Davidchik VN; Kulikova NA; Golubeva LI; Stepanova EV; Koroleva OV
    Prikl Biokhim Mikrobiol; 2008; 44(4):448-53. PubMed ID: 18924413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.