These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25576420)

  • 21. Potential of ligninolytic enzymatic complex produced by white-rot fungi from genus
    Krumova E; Kostadinova N; Miteva-Staleva J; Stoyancheva G; Spassova B; Abrashev R; Angelova M
    Eng Life Sci; 2018 Sep; 18(9):692-701. PubMed ID: 32624949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of estrogenic activity of 4-tert-octylphenol by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Hirai H; Kawai S; Nishida T
    Environ Toxicol; 2007 Jun; 22(3):281-6. PubMed ID: 17497634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus.
    Bajwa PK; Arora DS
    Can J Microbiol; 2009 Dec; 55(12):1397-402. PubMed ID: 20029532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi.
    Illuri R; Kumar M; Eyini M; Veeramanikandan V; Almaary KS; Elbadawi YB; Biraqdar MA; Balaji P
    Saudi J Biol Sci; 2021 Dec; 28(12):7207-7218. PubMed ID: 34867024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Yamaki R; Hirai H; Kawai S; Nishida T
    Chemosphere; 2006 Sep; 65(1):97-101. PubMed ID: 16584756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi.
    Hirai H; Nakanishi S; Nishida T
    Chemosphere; 2004 Apr; 55(4):641-5. PubMed ID: 15006517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polar vineyard pruning extracts increase the activity of the main ligninolytic enzymes in Lentinula edodes cultures.
    Harris-Valle C; Esqueda M; Sánchez A; Beltrán-García M; Valenzuela-Soto EM
    Can J Microbiol; 2007 Oct; 53(10):1150-7. PubMed ID: 18026207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi.
    Liew CY; Husaini A; Hussain H; Muid S; Liew KC; Roslan HA
    World J Microbiol Biotechnol; 2011 Jun; 27(6):1457-68. PubMed ID: 25187145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sugarcane bagasse degradation and characterization of three white-rot fungi.
    Dong XQ; Yang JS; Zhu N; Wang ET; Yuan HL
    Bioresour Technol; 2013 Mar; 131():443-51. PubMed ID: 23376835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Teratogenic potential of atrazine and 2,4-D using FETAX.
    Morgan MK; Scheuerman PR; Bishop CS; Pyles RA
    J Toxicol Environ Health; 1996 Jun; 48(2):151-68. PubMed ID: 8642623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Enzymes of white rot fungi involved in lignin degradation].
    Papinutti VL; Forchiassin F
    Rev Argent Microbiol; 2000; 32(2):83-8. PubMed ID: 10885008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Production of biomass and ligninolytic enzymes by Pleurotus ostreatus in submerged culture.].
    Guillén-Navarro GK; Márquez-Rocha FJ; Sanchez-Vázquez JE
    Rev Iberoam Micol; 1998 Dec; 15(4):302-6. PubMed ID: 18473524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening and production of ligninolytic enzyme by a marine-derived fungal Pestalotiopsis sp. J63.
    Chen HY; Xue DS; Feng XY; Yao SJ
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1754-69. PubMed ID: 21947763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery of duckweed from time-varying exposure to atrazine.
    Brain RA; Hosmer AJ; Desjardins D; Kendall TZ; Krueger HO; Wall SB
    Environ Toxicol Chem; 2012 May; 31(5):1121-8. PubMed ID: 22431202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of atrazine tolerance in a natural soil assemblage of microalgae reared in the laboratory.
    García-Villada L; Reboud X
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):102-6. PubMed ID: 16249030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR.
    Martin-Laurent F; Piutti S; Hallet S; Wagschal I; Philippot L; Catroux G; Soulas G
    Pest Manag Sci; 2003 Mar; 59(3):259-68. PubMed ID: 12639042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Impact of exogenous paraquat on enzyme exudation and biochemical changes of lignin degradation fungi].
    Zhao Y; Li J; Chen Y; Huang H; Yu Z
    Sheng Wu Gong Cheng Xue Bao; 2009 Aug; 25(8):1144-50. PubMed ID: 19938450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process.
    Aggelis G; Ehaliotis C; Nerud F; Stoychev I; Lyberatos G; Zervakis GI
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):353-60. PubMed ID: 12111170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.