These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 25576610)

  • 1. Microbial engineering for aldehyde synthesis.
    Kunjapur AM; Prather KL
    Appl Environ Microbiol; 2015 Mar; 81(6):1892-901. PubMed ID: 25576610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
    Kunjapur AM; Tarasova Y; Prather KL
    J Am Chem Soc; 2014 Aug; 136(33):11644-54. PubMed ID: 25076127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.
    Rodriguez GM; Atsumi S
    Metab Eng; 2014 Sep; 25():227-37. PubMed ID: 25108218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.
    Sui YA; Kishino S; Maruyama S; Ito M; Muramatsu M; Obata S; Ogawa J
    Appl Environ Microbiol; 2022 Dec; 88(23):e0126422. PubMed ID: 36416567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.
    Fatma Z; Jawed K; Mattam AJ; Yazdani SS
    Metab Eng; 2016 Sep; 37():35-45. PubMed ID: 27134112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxylic acid reductases in metabolic engineering.
    Butler N; Kunjapur AM
    J Biotechnol; 2020 Jan; 307():1-14. PubMed ID: 31628973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial gene inactivation of aldehyde dehydrogenases mitigates aldehyde oxidation catalyzed by E. coli resting cells.
    Butler ND; Anderson SR; Dickey RM; Nain P; Kunjapur AM
    Metab Eng; 2023 May; 77():294-305. PubMed ID: 37100193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.
    Schrewe M; Julsing MK; Lange K; Czarnotta E; Schmid A; Bühler B
    Biotechnol Bioeng; 2014 Sep; 111(9):1820-30. PubMed ID: 24852702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols.
    Jin Z; Wong A; Foo JL; Ng J; Cao YX; Chang MW; Yuan YJ
    Biotechnol Bioeng; 2016 Apr; 113(4):842-51. PubMed ID: 26461930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae.
    Kang MK; Zhou YJ; Buijs NA; Nielsen J
    Microb Cell Fact; 2017 May; 16(1):74. PubMed ID: 28464872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of fatty aldehyde and alcohol synthesis from fatty acids by αDox- or CAR-expressing Escherichia coli.
    Maurer S; Schewe H; Schrader J; Buchhaupt M
    J Biotechnol; 2019 Nov; 305():11-17. PubMed ID: 31430497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals.
    Jarboe LR
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):249-57. PubMed ID: 20924577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering an Alcohol-Forming Fatty Acyl-CoA Reductase for Aldehyde and Hydrocarbon Biosynthesis in
    Foo JL; Rasouliha BH; Susanto AV; Leong SSJ; Chang MW
    Front Bioeng Biotechnol; 2020; 8():585935. PubMed ID: 33123518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying and engineering the ideal microbial terpenoid production host.
    Moser S; Pichler H
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5501-5516. PubMed ID: 31129740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of alkanes, alcohols, and aldehydes using bioluminescence.
    Minak-Bernero V; Bare RE; Haith CE; Grossman MJ
    Biotechnol Bioeng; 2004 Jul; 87(2):170-7. PubMed ID: 15236245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial engineering strategies to improve cell viability for biochemical production.
    Lo TM; Teo WS; Ling H; Chen B; Kang A; Chang MW
    Biotechnol Adv; 2013 Nov; 31(6):903-14. PubMed ID: 23403071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli to high efficient synthesis phenylacetic acid from phenylalanine.
    Zhang L; Liu Q; Pan H; Li X; Guo D
    AMB Express; 2017 Dec; 7(1):105. PubMed ID: 28549374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprocess engineering for microbial synthesis and conversion of isoprenoids.
    Schewe H; Mirata MA; Schrader J
    Adv Biochem Eng Biotechnol; 2015; 148():251-86. PubMed ID: 25893480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli.
    George KW; Thompson MG; Kang A; Baidoo E; Wang G; Chan LJ; Adams PD; Petzold CJ; Keasling JD; Lee TS
    Sci Rep; 2015 Jun; 5():11128. PubMed ID: 26052683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of geranate via isopentenol utilization pathway in Escherichia coli.
    Pan Q; Ma X; Liang H; Liu Y; Zhou Y; Stephanopoulos G; Zhou K
    Biotechnol Bioeng; 2023 Jan; 120(1):230-238. PubMed ID: 36224741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.