BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25576624)

  • 1. Catheter-Based Radiofrequency Renal Denervation: Location Effects on Renal Norepinephrine.
    Henegar JR; Zhang Y; Hata C; Narciso I; Hall ME; Hall JE
    Am J Hypertens; 2015 Jul; 28(7):909-14. PubMed ID: 25576624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathoinhibitory Effect of Radiofrequency Renal Denervation in Spontaneously Hypertensive Rats With Established Hypertension.
    Gao J; Kerut EK; Smart F; Katsurada A; Seth D; Navar LG; Kapusta DR
    Am J Hypertens; 2016 Dec; 29(12):1394-1401. PubMed ID: 27538721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catheter-based radiorefrequency renal denervation lowers blood pressure in obese hypertensive dogs.
    Henegar JR; Zhang Y; De Rama R; Hata C; Hall ME; Hall JE
    Am J Hypertens; 2014 Oct; 27(10):1285-92. PubMed ID: 24709437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy and safety of catheter-based radiofrequency renal denervation in stented renal arteries.
    Mahfoud F; Tunev S; Ruwart J; Schulz-Jander D; Cremers B; Linz D; Zeller T; Bhatt DL; Rocha-Singh K; Böhm M; Melder RJ
    Circ Cardiovasc Interv; 2014 Dec; 7(6):813-20. PubMed ID: 25336466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Procedural and anatomical predictors of renal denervation efficacy using two radiofrequency renal denervation catheters in a porcine model.
    Wolf M; Hubbard B; Sakaoka A; Rousselle S; Tellez A; Jiang X; Kario K; Hohl M; Böhm M; Mahfoud F
    J Hypertens; 2018 Dec; 36(12):2453-2459. PubMed ID: 30005030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Lesion Placement on Efficacy and Safety of Catheter-Based Radiofrequency Renal Denervation.
    Mahfoud F; Tunev S; Ewen S; Cremers B; Ruwart J; Schulz-Jander D; Linz D; Davies J; Kandzari DE; Whitbourn R; Böhm M; Melder RJ
    J Am Coll Cardiol; 2015 Oct; 66(16):1766-1775. PubMed ID: 26483099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of branch and distally focused main renal artery denervation using two different radio-frequency systems in a porcine model.
    Mahfoud F; Pipenhagen CA; Boyce Moon L; Ewen S; Kulenthiran S; Fish JM; Jensen JA; Virmani R; Joner M; Yahagi K; Tsioufis C; Böhm M
    Int J Cardiol; 2017 Aug; 241():373-378. PubMed ID: 28465113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model.
    Bertog S; Fischel TA; Vega F; Ghazarossian V; Pathak A; Vaskelyte L; Kent D; Sievert H; Ladich E; Yahagi K; Virmani R
    EuroIntervention; 2017 Feb; 12(15):e1898-e1906. PubMed ID: 27890862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of histopathologic analysis following renal sympathetic denervation over multiple time points.
    Sakakura K; Tunev S; Yahagi K; O'Brien AJ; Ladich E; Kolodgie FD; Melder RJ; Joner M; Virmani R
    Circ Cardiovasc Interv; 2015 Feb; 8(2):e001813. PubMed ID: 25652318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety of catheter-based radiofrequency renal denervation on branch renal arteries in a porcine model.
    Sakaoka A; Rousselle SD; Hagiwara H; Tellez A; Hubbard B; Sakakura K
    Catheter Cardiovasc Interv; 2019 Feb; 93(3):494-502. PubMed ID: 30407718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter.
    Su E; Zhao L; Gao C; Zhao W; Wang X; Qi D; Zhu L; Yang X; Zhu B; Liu Y
    BMC Cardiovasc Disord; 2019 Mar; 19(1):67. PubMed ID: 30902047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal Sympathetic Denervation System via Intraluminal Ultrasonic Ablation: Therapeutic Intravascular Ultrasound Design and Preclinical Evaluation.
    Chernin G; Szwarcfiter I; Bausback Y; Jonas M
    J Vasc Interv Radiol; 2017 May; 28(5):740-748. PubMed ID: 28268057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies.
    Tellez A; Rousselle S; Palmieri T; Rate WR; Wicks J; Degrange A; Hyon CM; Gongora CA; Hart R; Grundy W; Kaluza GL; Granada JF
    Transl Res; 2013 Dec; 162(6):381-9. PubMed ID: 23911638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodological standardization for the pre-clinical evaluation of renal sympathetic denervation.
    Sakakura K; Ladich E; Edelman ER; Markham P; Stanley JR; Keating J; Kolodgie FD; Virmani R; Joner M
    JACC Cardiovasc Interv; 2014 Oct; 7(10):1184-93. PubMed ID: 25240550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy and safety of renal denervation in elderly patients with resistant hypertension.
    Ziegler AK; Bertog S; Kaltenbach B; Id D; Franke J; Hofmann I; Vaskelyte L; Sievert H
    Catheter Cardiovasc Interv; 2015 Aug; 86(2):299-303. PubMed ID: 23983010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal sympathetic nerve denervation using intraluminal ultrasound within a cooling balloon preserves the arterial wall and reduces sympathetic nerve activity.
    Pathak A; Coleman L; Roth A; Stanley J; Bailey L; Markham P; Ewen S; Morel C; Despas F; Honton B; Senard JM; Fajadet J; Mahfoud F
    EuroIntervention; 2015 Aug; 11(4):477-84. PubMed ID: 26298415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal denervation using catheter-based radiofrequency ablation with temperature control: renovascular safety profile and underlying mechanisms in a hypertensive canine model.
    Li H; Yu H; Zeng C; Fang Y; He D; Zhang X; Wen C; Yang C
    Clin Exp Hypertens; 2015; 37(3):207-11. PubMed ID: 25051229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of renal nerve morphological changes and norepinephrine levels following treatment with novel bipolar radiofrequency delivery systems in a porcine model.
    Cohen-Mazor M; Mathur P; Stanley JR; Mendelsohn FO; Lee H; Baird R; Zani BG; Markham PM; Rocha-Singh K
    J Hypertens; 2014 Aug; 32(8):1678-91; discussion 1691-2. PubMed ID: 24875181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational value of preclinical models for renal denervation: a histological comparison of human versus porcine renal nerve anatomy.
    Sato Y; Sharp ASP; Mahfoud F; Tunev S; Forster A; Ellis M; Gomez A; Dhingra R; Ullman J; Schlaich M; Lee D; Trudel J; Hettrick DA; Kandzari DE; Virmani R; Finn AV
    EuroIntervention; 2023 Feb; 18(13):e1120-e1128. PubMed ID: 36214318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Procedural and Anatomical Determinants of Multielectrode Renal Denervation Efficacy.
    Tzafriri AR; Mahfoud F; Keating JH; Spognardi AM; Markham PM; Wong G; Highsmith D; O'Fallon P; Fuimaono K; Edelman ER
    Hypertension; 2019 Sep; 74(3):546-554. PubMed ID: 31303108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.