These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25576694)

  • 1. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China.
    Bai J; Shen Z; Yan T; Qiu J; Li Y
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15462-15470. PubMed ID: 28512705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed.
    Frey SK; Topp E; Edge T; Fall C; Gannon V; Jokinen C; Marti R; Neumann N; Ruecker N; Wilkes G; Lapen DR
    Water Res; 2013 Oct; 47(16):6326-37. PubMed ID: 24079968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.
    Cho KH; Pachepsky YA; Kim JH; Kim JW; Park MH
    Water Res; 2012 Oct; 46(15):4750-60. PubMed ID: 22784807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the soil and water assessment tool (SWAT) for simulating E. coli concentrations at the watershed-scale.
    Sowah RA; Bradshaw K; Snyder B; Spidle D; Molina M
    Sci Total Environ; 2020 Dec; 746():140669. PubMed ID: 32763592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verifying the applicability of SWAT to simulate fecal contamination for watershed management of Selangor River, Malaysia.
    Kondo T; Sakai N; Yazawa T; Shimizu Y
    Sci Total Environ; 2021 Jun; 774():145075. PubMed ID: 33609845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Fecal Indicator Bacteria Using Spatial Stream Network Models in A Mixed-Land-Use Suburban Watershed in New Jersey, USA.
    Hsu TD; Yu D; Wu M
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model.
    Chen WB; Liu WC
    Mar Pollut Bull; 2017 Mar; 116(1-2):365-384. PubMed ID: 28117132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source specific fecal bacteria modeling using soil and water assessment tool model.
    Parajuli PB; Mankin KR; Barnes PL
    Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.
    Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G
    Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing fecal coliform fate and transport in a coastal watershed using HSPF.
    Rolle K; Gitau MW; Chen G; Chauhan A
    Water Sci Technol; 2012; 66(5):1096-102. PubMed ID: 22797240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling fecal coliform contamination in a tidal Danshuei River estuarine system.
    Liu WC; Chan WT; Young CC
    Sci Total Environ; 2015 Jan; 502():632-40. PubMed ID: 25302451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially explicit pollutant load-integrated in-stream E. coli concentration modeling in a mixed land-use catchment.
    Thilakarathne M; Sridhar V; Karthikeyan R
    Water Res; 2018 Nov; 144():87-103. PubMed ID: 30014982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment.
    Kim M; Boithias L; Cho KH; Silvera N; Thammahacksa C; Latsachack K; Rochelle-Newall E; Sengtaheuanghoung O; Pierret A; Pachepsky YA; Ribolzi O
    Water Res; 2017 Aug; 119():102-113. PubMed ID: 28436821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.
    Hong EM; Park Y; Muirhead R; Jeong J; Pachepsky YA
    Sci Total Environ; 2018 Feb; 615():47-58. PubMed ID: 28963896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.
    Kim SM; Brannan KM; Zeckoski RW; Benham BL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(9):1077-89. PubMed ID: 24798906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Impact of Land Use Change on Basin-scale Transfer of Fecal Indicator Bacteria: SWAT Model Performance.
    Kim M; Boithias L; Cho KH; Sengtaheuanghoung O; Ribolzi O
    J Environ Qual; 2018 Sep; 47(5):1115-1122. PubMed ID: 30272793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.
    Im S; Brannan KM; Mostaghimi S; Kim SM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1561-70. PubMed ID: 17849297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growing season surface water loading of fecal indicator organisms within a rural watershed.
    Sinclair A; Hebb D; Jamieson R; Gordon R; Benedict K; Fuller K; Stratton GW; Madani A
    Water Res; 2009 Mar; 43(5):1199-206. PubMed ID: 19117588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.