These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25576794)
1. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site. Gajadeera CS; Zhang X; Wei Y; Tsodikov OV J Struct Biol; 2015 Feb; 189(2):81-6. PubMed ID: 25576794 [TBL] [Abstract][Full Text] [Related]
2. Structural and computational dissection of the catalytic mechanism of the inorganic pyrophosphatase from Mycobacterium tuberculosis. Pratt AC; Dewage SW; Pang AH; Biswas T; Barnard-Britson S; Cisneros GA; Tsodikov OV J Struct Biol; 2015 Oct; 192(1):76-87. PubMed ID: 26296329 [TBL] [Abstract][Full Text] [Related]
3. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis. Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976 [TBL] [Abstract][Full Text] [Related]
4. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion. Fabrichniy IP; Lehtiö L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045 [TBL] [Abstract][Full Text] [Related]
5. A complete structural description of the catalytic cycle of yeast pyrophosphatase. Oksanen E; Ahonen AK; Tuominen H; Tuominen V; Lahti R; Goldman A; Heikinheimo P Biochemistry; 2007 Feb; 46(5):1228-39. PubMed ID: 17260952 [TBL] [Abstract][Full Text] [Related]
6. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes. Lokanath NK; Pampa KJ; Takio K; Kunishima N J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and structural properties of inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori. Chao TC; Huang H; Tsai JY; Huang CY; Sun YJ Proteins; 2006 Nov; 65(3):670-80. PubMed ID: 16988955 [TBL] [Abstract][Full Text] [Related]
8. Structure of inorganic pyrophosphatase from Helicobacter pylori. Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722 [TBL] [Abstract][Full Text] [Related]
9. Active-site structure of class IV adenylyl cyclase and transphyletic mechanism. Gallagher DT; Kim SK; Robinson H; Reddy PT J Mol Biol; 2011 Jan; 405(3):787-803. PubMed ID: 21094652 [TBL] [Abstract][Full Text] [Related]
10. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor. Qiu X; Pohl E; Holmes RK; Hol WG Biochemistry; 1996 Sep; 35(38):12292-302. PubMed ID: 8823163 [TBL] [Abstract][Full Text] [Related]
11. Substrate-induced closing of the active site revealed by the crystal structure of pantothenate synthetase from Staphylococcus aureus. Satoh A; Konishi S; Tamura H; Stickland HG; Whitney HM; Smith AG; Matsumura H; Inoue T Biochemistry; 2010 Aug; 49(30):6400-10. PubMed ID: 20568730 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the leucine aminopeptidase from Pseudomonas putida reveals the molecular basis for its enantioselectivity and broad substrate specificity. Kale A; Pijning T; Sonke T; Dijkstra BW; Thunnissen AM J Mol Biol; 2010 May; 398(5):703-14. PubMed ID: 20359484 [TBL] [Abstract][Full Text] [Related]
13. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Thompson MK; Keithly ME; Goodman MC; Hammer ND; Cook PD; Jagessar KL; Harp J; Skaar EP; Armstrong RN Biochemistry; 2014 Feb; 53(4):755-65. PubMed ID: 24447055 [TBL] [Abstract][Full Text] [Related]
14. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152 [TBL] [Abstract][Full Text] [Related]
15. Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 A resolution. Rantanen MK; Lehtiö L; Rajagopal L; Rubens CE; Goldman A Acta Crystallogr D Biol Crystallogr; 2007 Jun; 63(Pt 6):738-43. PubMed ID: 17505113 [TBL] [Abstract][Full Text] [Related]
16. Discovery of Allosteric and Selective Inhibitors of Inorganic Pyrophosphatase from Mycobacterium tuberculosis. Pang AH; Garzan A; Larsen MJ; McQuade TJ; Garneau-Tsodikova S; Tsodikov OV ACS Chem Biol; 2016 Nov; 11(11):3084-3092. PubMed ID: 27622287 [TBL] [Abstract][Full Text] [Related]
17. X-ray Crystallography and Electron Paramagnetic Resonance Spectroscopy Reveal Active Site Rearrangement of Cold-Adapted Inorganic Pyrophosphatase. Horitani M; Kusubayashi K; Oshima K; Yato A; Sugimoto H; Watanabe K Sci Rep; 2020 Mar; 10(1):4368. PubMed ID: 32152422 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide- and substrate-induced conformational transitions in the CBS domain-containing pyrophosphatase of Moorella thermoacetica. Jämsen J; Baykov AA; Lahti R Biochemistry; 2010 Feb; 49(5):1005-13. PubMed ID: 20038140 [TBL] [Abstract][Full Text] [Related]
19. Crystal structures of active LytM. Firczuk M; Mucha A; Bochtler M J Mol Biol; 2005 Dec; 354(3):578-90. PubMed ID: 16269153 [TBL] [Abstract][Full Text] [Related]
20. Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies. Samygina VR; Moiseev VM; Rodina EV; Vorobyeva NN; Popov AN; Kurilova SA; Nazarova TI; Avaeva SM; Bartunik HD J Mol Biol; 2007 Mar; 366(4):1305-17. PubMed ID: 17196979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]