BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25577056)

  • 1. Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions.
    Navarro M; Morales FJ
    Food Chem; 2015 May; 175():92-9. PubMed ID: 25577056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model.
    Navarro M; Morales FJ
    Food Chem; 2017 Feb; 217():602-609. PubMed ID: 27664677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the Reaction of C3 and C6 α-Dicarbonyl Compounds with Hydroxytyrosol and Related Compounds under Competitive Conditions.
    Navarro M; Atzenbeck L; Pischetsrieder M; Morales FJ
    J Agric Food Chem; 2016 Aug; 64(32):6327-32. PubMed ID: 27476321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual effects of propyl gallate and its methylglyoxal adduct on carbonyl stress and oxidative stress.
    Cui H; Tao F; Hou Y; Lu Y; Zheng T; Sang S; Lv L
    Food Chem; 2018 Nov; 265():227-232. PubMed ID: 29884377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonyl trapping and antiglycative activities of olive oil mill wastewater.
    Navarro M; Fiore A; Fogliano V; Morales FJ
    Food Funct; 2015 Feb; 6(2):574-83. PubMed ID: 25519075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an olive leaf extract as a natural source of antiglycative compounds.
    Navarro M; Morales FJ
    Food Res Int; 2017 Feb; 92():56-63. PubMed ID: 28290298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of rooibos (
    Chen YT; Lin YY; Pan MH; Ho CT; Hung WL
    Food Chem X; 2022 Dec; 16():100515. PubMed ID: 36519092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cretan tea (Origanum dictamnus L.) as a functional beverage: an investigation on antiglycative and carbonyl trapping activities.
    Maietta M; Colombo R; Corana F; Papetti A
    Food Funct; 2018 Mar; 9(3):1545-1556. PubMed ID: 29431803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloretin and its methylglyoxal adduct: Implications against advanced glycation end products-induced inflammation in endothelial cells.
    Zhou Q; Gong J; Wang M
    Food Chem Toxicol; 2019 Jul; 129():291-300. PubMed ID: 31059746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of bilitranslocase and beta-glucuronidase in the vascular protection by hydroxytyrosol and its glucuronide metabolites in oxidative stress conditions.
    Peyrol J; Meyer G; Obert P; Dangles O; Pechère L; Amiot MJ; Riva C
    J Nutr Biochem; 2018 Jan; 51():8-15. PubMed ID: 29078076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of advanced glycation end products and amino acid cross-links in foods by high-resolution mass spectrometry: Applicability of acid hydrolysis.
    Akıllıoğlu HG; Lund MN
    Food Chem; 2022 Jan; 366():130601. PubMed ID: 34298391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.
    Sun YP; Gu JF; Tan XB; Wang CF; Jia XB; Feng L; Liu JP
    Mol Med Rep; 2016 Feb; 13(2):1475-86. PubMed ID: 26718010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.