These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25577110)

  • 1. D-glucose, D-galactose, and D-lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode.
    Jiaojiao J; Yangyang G; Gangying Z; Yanping C; Wei L; Guohua H
    Food Chem; 2015 May; 175():485-93. PubMed ID: 25577110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose quantitative and qualitative analysis from tastant mixtures based on Cu foam electrode and stochastic resonance.
    Hui G; Zhang J; Li J; Zheng L
    Food Chem; 2016 Apr; 197 Pt B():1168-76. PubMed ID: 26675854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case.
    Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M
    Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode.
    Luo J; Jiang S; Zhang H; Jiang J; Liu X
    Anal Chim Acta; 2012 Jan; 709():47-53. PubMed ID: 22122930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Well-dispersed Pt cubes on porous Cu foam: high-performance catalysts for the electrochemical oxidation of glucose in neutral media.
    Niu X; Lan M; Zhao H; Chen C
    Chemistry; 2013 Jul; 19(29):9534-41. PubMed ID: 23744705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Cu-NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors.
    Zhang X; Gu A; Wang G; Huang Y; Ji H; Fang B
    Analyst; 2011 Dec; 136(24):5175-80. PubMed ID: 22029045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor.
    Zhang X; Wang G; Zhang W; Wei Y; Fang B
    Biosens Bioelectron; 2009 Jul; 24(11):3395-8. PubMed ID: 19473828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomerization of lactose-derived oligosaccharides: a case study using sodium aluminate.
    Cardelle-Cobas A; Corzo N; Villamiel M; Olano A
    J Agric Food Chem; 2008 Nov; 56(22):10954-9. PubMed ID: 18983158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anneal-shrinked Cu
    Niu X; Pan J; Qiu F; Li X; Yan Y; Shi L; Zhao H; Lan M
    Talanta; 2016 Dec; 161():615-622. PubMed ID: 27769455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures.
    Li H; Guo CY; Xu CL
    Biosens Bioelectron; 2015 Jan; 63():339-346. PubMed ID: 25113052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode.
    Jiang LC; Zhang WD
    Biosens Bioelectron; 2010 Feb; 25(6):1402-7. PubMed ID: 19942424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion chromatographic determination of lactose, galactose, and dextrose in grated cheese using pulsed amperometric detection.
    Pollman RM
    J Assoc Off Anal Chem; 1989; 72(3):425-8. PubMed ID: 2745363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose.
    Yang Q; Long M; Tan L; Zhang Y; Ouyang J; Liu P; Tang A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12719-30. PubMed ID: 25970570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode.
    Li S; Zheng Y; Qin GW; Ren Y; Pei W; Zuo L
    Talanta; 2011 Sep; 85(3):1260-4. PubMed ID: 21807180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel glucose non-interference biosensor for lactose detection based on galactose oxidase-peroxidase with and without co-immobilised beta-galactosidase.
    Tkác J; Sturdík E; Gemeiner P
    Analyst; 2000 Jul; 125(7):1285-9. PubMed ID: 10984924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactose, galactose and glucose determination in naturally "lactose free" hard cheese: HPAEC-PAD method validation.
    Monti L; Negri S; Meucci A; Stroppa A; Galli A; Contarini G
    Food Chem; 2017 Apr; 220():18-24. PubMed ID: 27855887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of glucose, galactose, and lactose in milk with a microdialysis-coupled flow injection amperometric sensor.
    Rajendran V; Lrudayaraj J
    J Dairy Sci; 2002 Jun; 85(6):1357-61. PubMed ID: 12146464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose.
    Xu J; Cao X; Xia J; Gong S; Wang Z; Lu L
    Anal Chim Acta; 2016 Aug; 934():44-51. PubMed ID: 27506342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor.
    Gopalan AI; Muthuchamy N; Komathi S; Lee KP
    Biosens Bioelectron; 2016 Oct; 84():53-63. PubMed ID: 26584775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing.
    Dong J; Ren L; Zhang Y; Cui X; Hu P; Xu J
    Talanta; 2015 Jan; 132():719-26. PubMed ID: 25476370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.