BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 25577278)

  • 21. Green synthesis of NiO NPs for metagenome-derived laccase stabilization: Detoxifying pollutants and wastes.
    Ariaeenejad S; Barani M; Sarani M; Lohrasbi-Nejad A; Mohammadi-Nejad G; Salekdeh GH
    Int J Biol Macromol; 2024 May; 266(Pt 1):130986. PubMed ID: 38508564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of bacterial laccases and their application in bioremediation of industrial wastes.
    Chandra R; Chowdhary P
    Environ Sci Process Impacts; 2015 Feb; 17(2):326-42. PubMed ID: 25590782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catechol Removal from Aqueous Media Using Laccase Immobilized in Different Macro- and Microreactor Systems.
    Tušek AJ; Šalić A; Zelić B
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1575-1590. PubMed ID: 28116574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst.
    Wang KF; Liu CL; Sui KY; Guo C; Liu CZ
    Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology.
    Mate DM; Alcalde M
    Microb Biotechnol; 2017 Nov; 10(6):1457-1467. PubMed ID: 27696775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications.
    Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A
    J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Structure, catalytic mechanism and applications of laccases: a review].
    Ge H; Wu Y; Xiao Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):156-63. PubMed ID: 21650039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial laccases: promising biological green tools for industrial applications.
    Guan ZB; Luo Q; Wang HR; Chen Y; Liao XR
    Cell Mol Life Sci; 2018 Oct; 75(19):3569-3592. PubMed ID: 30046841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymerization of dopamine catalyzed by laccase: Comparison of enzymatic and conventional methods.
    Li F; Yu Y; Wang Q; Yuan J; Wang P; Fan X
    Enzyme Microb Technol; 2018 Dec; 119():58-64. PubMed ID: 30243388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioelectrochemical oxidation of water.
    Pita M; Mate DM; Gonzalez-Perez D; Shleev S; Fernandez VM; Alcalde M; De Lacey AL
    J Am Chem Soc; 2014 Apr; 136(16):5892-5. PubMed ID: 24725275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel starch-binding laccase from the wheat pathogen Zymoseptoria tritici highlights the functional diversity of ascomycete laccases.
    Haddad Momeni M; Bollella P; Ortiz R; Thormann E; Gorton L; Abou Hachem M
    BMC Biotechnol; 2019 Aug; 19(1):61. PubMed ID: 31426777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines.
    Simić S; Jeremic S; Djokic L; Božić N; Vujčić Z; Lončar N; Senthamaraikannan R; Babu R; Opsenica IM; Nikodinovic-Runic J
    Enzyme Microb Technol; 2020 Jan; 132():109411. PubMed ID: 31731971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laccases and Tyrosinases in Organic Synthesis.
    Martínková L; Křístková B; Křen V
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry.
    Cannatelli MD; Ragauskas AJ
    Chem Rec; 2017 Jan; 17(1):122-140. PubMed ID: 27492131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass.
    Pardo I; Chanagá X; Vicente AI; Alcalde M; Camarero S
    BMC Biotechnol; 2013 Oct; 13():90. PubMed ID: 24159930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview.
    Brugnari T; Braga DM; Dos Santos CSA; Torres BHC; Modkovski TA; Haminiuk CWI; Maciel GM
    Bioresour Bioprocess; 2021 Dec; 8(1):131. PubMed ID: 38650295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications.
    Forootanfar H; Faramarzi MA
    Biotechnol Prog; 2015; 31(6):1443-63. PubMed ID: 26399693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural.
    Cascelli N; Gotor-Fernández V; Lavandera I; Sannia G; Lettera V
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laccase-mediator system for alcohol oxidation to carbonyls or carboxylic acids: toward a sustainable synthesis of profens.
    Galletti P; Pori M; Funiciello F; Soldati R; Ballardini A; Giacomini D
    ChemSusChem; 2014 Sep; 7(9):2684-9. PubMed ID: 25044433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.