These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 25577370)

  • 61. Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots.
    Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):323-32. PubMed ID: 20431151
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Toward a next-generation atlas of RNA secondary structure.
    Bai Y; Dai X; Harrison A; Johnston C; Chen M
    Brief Bioinform; 2016 Jan; 17(1):63-77. PubMed ID: 25922372
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural alignment of pseudoknotted RNA.
    Han B; Dost B; Bafna V; Zhang S
    J Comput Biol; 2008 Jun; 15(5):489-504. PubMed ID: 18549303
    [TBL] [Abstract][Full Text] [Related]  

  • 64. De novo prediction of structured RNAs from genomic sequences.
    Gorodkin J; Hofacker IL; Torarinsson E; Yao Z; Havgaard JH; Ruzzo WL
    Trends Biotechnol; 2010 Jan; 28(1):9-19. PubMed ID: 19942311
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An efficient alignment algorithm for searching simple pseudoknots over long genomic sequence.
    Ma C; Wong TK; Lam TW; Hon WK; Sadakane K; Yiu SM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1629-38. PubMed ID: 22848134
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A partition function algorithm for interacting nucleic acid strands.
    Chitsaz H; Salari R; Sahinalp SC; Backofen R
    Bioinformatics; 2009 Jun; 25(12):i365-73. PubMed ID: 19478011
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.
    Li J; Xu C; Wang L; Liang H; Feng W; Cai Z; Wang Y; Cong W; Liu Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1643001. PubMed ID: 27045556
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermodynamic matchers: strengthening the significance of RNA folding energies.
    Höchsmann T; Höchsmann M; Giegerich R
    Comput Syst Bioinformatics Conf; 2006; ():111-21. PubMed ID: 17369630
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rfam: annotating families of non-coding RNA sequences.
    Daub J; Eberhardt RY; Tate JG; Burge SW
    Methods Mol Biol; 2015; 1269():349-63. PubMed ID: 25577390
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fast and accurate clustering of noncoding RNAs using ensembles of sequence alignments and secondary structures.
    Saito Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S48. PubMed ID: 21342580
    [TBL] [Abstract][Full Text] [Related]  

  • 71. R2DT is a framework for predicting and visualising RNA secondary structure using templates.
    Sweeney BA; Hoksza D; Nawrocki EP; Ribas CE; Madeira F; Cannone JJ; Gutell R; Maddala A; Meade CD; Williams LD; Petrov AS; Chan PP; Lowe TM; Finn RD; Petrov AI
    Nat Commun; 2021 Jun; 12(1):3494. PubMed ID: 34108470
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicting RNA Families in Nucleotide Sequences Using StructRNAfinder.
    Maracaja-Coutinho V; Arias-Carrasco R; Nakaya HI; Aliaga-Tobar V
    Methods Mol Biol; 2019; 1962():15-27. PubMed ID: 31020552
    [TBL] [Abstract][Full Text] [Related]  

  • 73. De novo secondary structure motif discovery using RNAProfile.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2015; 1269():49-62. PubMed ID: 25577372
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A computational pipeline for high- throughput discovery of cis-regulatory noncoding RNA in prokaryotes.
    Yao Z; Barrick J; Weinberg Z; Neph S; Breaker R; Tompa M; Ruzzo WL
    PLoS Comput Biol; 2007 Jul; 3(7):e126. PubMed ID: 17616982
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families.
    Barquist L; Burge SW; Gardner PP
    Curr Protoc Bioinformatics; 2016 Jun; 54():12.13.1-12.13.25. PubMed ID: 27322404
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RNAdetect: efficient computational detection of novel non-coding RNAs.
    Chen CC; Qian X; Yoon BJ
    Bioinformatics; 2019 Apr; 35(7):1133-1141. PubMed ID: 30169792
    [TBL] [Abstract][Full Text] [Related]  

  • 77. How to benchmark RNA secondary structure prediction accuracy.
    Mathews DH
    Methods; 2019 Jun; 162-163():60-67. PubMed ID: 30951834
    [TBL] [Abstract][Full Text] [Related]  

  • 78. RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency.
    Wright ES
    RNA; 2020 May; 26(5):531-540. PubMed ID: 32005745
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RNAProfile: an algorithm for finding conserved secondary structure motifs in unaligned RNA sequences.
    Pavesi G; Mauri G; Stefani M; Pesole G
    Nucleic Acids Res; 2004; 32(10):3258-69. PubMed ID: 15199174
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Median and small parsimony problems on RNA trees.
    Marchand B; Anselmetti Y; Lafond M; Ouangraoua A
    Bioinformatics; 2024 Jun; 40(Supplement_1):i237-i246. PubMed ID: 38940169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.