BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25577437)

  • 1. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading.
    Prot M; Saletti D; Pattofatto S; Bousson V; Laporte S
    J Biomech; 2015 Feb; 48(3):498-503. PubMed ID: 25577437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur.
    Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M
    J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone.
    Teo JC; Si-Hoe KM; Keh JE; Teoh SH
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):235-44. PubMed ID: 16356612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.
    Prot M; Cloete TJ; Saletti D; Laporte S
    J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests.
    Bruyère Garnier K; Dumas R; Rumelhart C; Arlot ME
    Med Eng Phys; 1999 Nov; 21(9):641-9. PubMed ID: 10699566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone.
    Mittra E; Rubin C; Qin YX
    J Biomech; 2005 Jun; 38(6):1229-37. PubMed ID: 15863107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates.
    Ding M; Day JS; Burr DB; Mashiba T; Hirano T; Weinans H; Sumner DR; Hvid I
    Calcif Tissue Int; 2003 Jun; 72(6):737-44. PubMed ID: 14563003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional microarchitecture of adolescent cancellous bone.
    Ding M; Danielsen CC; Hvid I; Overgaard S
    Bone; 2012 Nov; 51(5):953-60. PubMed ID: 22884723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of end boundary conditions and specimen geometry on the viscoelastic properties of cancellous bone measured by dynamic mechanical analysis.
    Dong XN; Yeni YN; Les CM; Fyhrie DP
    J Biomed Mater Res A; 2004 Mar; 68(3):573-83. PubMed ID: 14762938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle.
    Giesen EB; Ding M; Dalstra M; van Eijden TM
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):358-63. PubMed ID: 12689786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone.
    Tassani S; Ohman C; Baleani M; Baruffaldi F; Viceconti M
    J Biomech; 2010 Apr; 43(6):1160-6. PubMed ID: 20056226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.