These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25577437)

  • 41. Mimetization of the elastic properties of cancellous bone via a parameterized cellular material.
    Colabella L; Cisilino AP; Häiat G; Kowalczyk P
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1485-1502. PubMed ID: 28374083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Misalignment Error in Cancellous Bone Apparent Elastic Modulus Depends on Bone Volume Fraction and Degree of Anisotropy.
    Bennison MBL; Pilkey AK; Lievers WB
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32601664
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing.
    Nazarian A; Meier D; Müller R; Snyder BD
    J Orthop Res; 2009 Dec; 27(12):1667-74. PubMed ID: 19572408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The elastic properties of morsellised cortico-cancellous bone graft are dependent on its prior loading.
    Phillips AT; Pankaj ; Brown DT; Oram TZ; Howie CR; Usmani AS
    J Biomech; 2006; 39(8):1517-26. PubMed ID: 16767808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Irradiation does not modify mechanical properties of cancellous bone under compression.
    Hernandez CJ; Ramsey DS; Dux SJ; Chu EH; Rimnac CM
    Clin Orthop Relat Res; 2012 Sep; 470(9):2488-95. PubMed ID: 22033873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone.
    Yamada S; Tadano S; Fukasawa K
    J Biomech; 2016 Dec; 49(16):4124-4127. PubMed ID: 27793405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic.
    Giesen EB; Ding M; Dalstra M; van Eijden TM
    J Biomech; 2001 Jun; 34(6):799-803. PubMed ID: 11470118
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone.
    Kim W; Oravec D; Nekkanty S; Yerramshetty J; Sander EA; Divine GW; Flynn MJ; Yeni YN
    Med Eng Phys; 2015 Jan; 37(1):109-20. PubMed ID: 25498138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural strength of cancellous specimens from bovine femur under cyclic compression.
    Endo K; Yamada S; Todoh M; Takahata M; Iwasaki N; Tadano S
    PeerJ; 2016; 4():e1562. PubMed ID: 26855856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of mechanical properties of the cancellous bone of the mandibular condyle.
    van Ruijven LJ; Giesen EB; Farella M; van Eijden TM
    J Dent Res; 2003 Oct; 82(10):819-23. PubMed ID: 14514763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices.
    Palissery V; Taylor M; Browne M
    J Mater Sci Mater Med; 2004 Jan; 15(1):61-7. PubMed ID: 15338592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anisotropy and strain rate effects on bovine cortical bone: combination of high-resolution imaging and dynamic loading.
    Mayeur O; Haugou G; Chaari F
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():206-8. PubMed ID: 23923911
    [No Abstract]   [Full Text] [Related]  

  • 58. Mechanical properties of compacted morselized cancellous bone graft using one-dimensional consolidation testing.
    Voor MJ; Nawab A; Malkani AL; Ullrich CR
    J Biomech; 2000 Dec; 33(12):1683-8. PubMed ID: 11006393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micro-computed tomography assessment of the progression of fracture healing in mice.
    O'Neill KR; Stutz CM; Mignemi NA; Burns MC; Murry MR; Nyman JS; Schoenecker JG
    Bone; 2012 Jun; 50(6):1357-67. PubMed ID: 22453081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study.
    Nguyen VH; Rosi G; Naili S; Michel A; Raffa ML; Bosc R; Meningaud JP; Chappard C; Takano N; Haiat G
    Comput Methods Biomech Biomed Engin; 2017 Sep; 20(12):1312-1325. PubMed ID: 28768422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.