BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25577492)

  • 21. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles.
    Naja G; Apiratikul R; Pavasant P; Volesky B; Hawari J
    Environ Pollut; 2009; 157(8-9):2405-12. PubMed ID: 19345459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles.
    Xu Y; Fang Z; Tsang EP
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19164-72. PubMed ID: 27351875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y; Zhao D
    Water Res; 2007 May; 41(10):2101-8. PubMed ID: 17412389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.
    Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B
    Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.
    Qi J; Zhang G; Li H
    Bioresour Technol; 2015 Oct; 193():243-9. PubMed ID: 26141284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils.
    Karthick A; Roy B; Chattopadhyay P
    J Environ Manage; 2019 Jun; 240():93-107. PubMed ID: 30928799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of hexabromocyclododecane by carboxymethyl cellulose stabilized Fe and Ni/Fe bimetallic nanoparticles: The particle stability and reactivity in water.
    Tso CP; Kuo DTF; Shih YH
    Chemosphere; 2020 Jul; 250():126155. PubMed ID: 32105853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles.
    Zhou H; Han J; Baig SA; Xu X
    J Hazard Mater; 2011 Dec; 198():7-12. PubMed ID: 22018865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles.
    Huo L; Xie W; Qian T; Guan X; Zhao D
    Chemosphere; 2017 May; 174():456-465. PubMed ID: 28187392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: Modeling and optimization.
    Mohammadi A; Nemati S; Mosaferi M; Abdollahnejhad A; Almasian M; Sheikhmohammadi A
    J Contam Hydrol; 2017 Aug; 203():85-92. PubMed ID: 28709527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilized green rusts for aqueous Cr(VI) removal: Fast kinetics, high iron utilization rate and anti-acidification.
    Zhao J; Xiong S; Ai J; Wu J; Huang LZ; Yin W
    Chemosphere; 2021 Jan; 262():127853. PubMed ID: 32777616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbo-Iron - An Fe/AC composite - As alternative to nano-iron for groundwater treatment.
    Mackenzie K; Bleyl S; Georgi A; Kopinke FD
    Water Res; 2012 Aug; 46(12):3817-26. PubMed ID: 22591820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments.
    Ma X; He D; Jones AM; Waite TD; An T
    J Environ Sci (China); 2019 Mar; 77():303-311. PubMed ID: 30573094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic availability and uptake by edible rape (Brassica campestris L.) grown in contaminated soils spiked with carboxymethyl cellulose-stabilized ferrihydrite nanoparticles.
    Huo L; Huang D; Zeng X; Su S; Wang Y; Bai L; Wu C
    Environ Sci Pollut Res Int; 2018 May; 25(15):15080-15088. PubMed ID: 29557040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Preparation of Stabilized Iron Sulfide Nanoparticle-Impregnated Alginate Composite for Selenite Remediation.
    Wu J; Zeng RJ
    Environ Sci Technol; 2018 Jun; 52(11):6487-6496. PubMed ID: 29722535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L; Yang W; Guan X; Li J; Xu Z; Wu J; Huang Y; Zhang X
    Water Res; 2013 Oct; 47(15):5846-55. PubMed ID: 23899877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Dynamic effects of commonly co-existing anions on the removal of selenite from groundwater by nanoscale zero-valent iron].
    Yang WJ; Guo YQ; Du ED
    Huan Jing Ke Xue; 2014 May; 35(5):1793-7. PubMed ID: 25055668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating.
    Huang D; Hu Z; Peng Z; Zeng G; Chen G; Zhang C; Cheng M; Wan J; Wang X; Qin X
    J Environ Manage; 2018 Mar; 210():191-200. PubMed ID: 29353113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene.
    Cao J; Xu R; Tang H; Tang S; Cao M
    Sci Total Environ; 2011 May; 409(11):2336-41. PubMed ID: 21439609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.