These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25577492)

  • 41. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].
    Li L; Pan G; Chen H
    Huan Jing Ke Xue; 2010 Mar; 31(3):678-83. PubMed ID: 20358826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.
    Liu R; Zhao D
    Chemosphere; 2013 Apr; 91(5):594-601. PubMed ID: 23336925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products.
    Yang CH; Kung TA; Chen PJ
    Environ Pollut; 2019 Sep; 252(Pt B):1920-1932. PubMed ID: 31227347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions.
    Singh R; Misra V; Mudiam MK; Chauhan LK; Singh RP
    J Hazard Mater; 2012 Oct; 237-238():355-64. PubMed ID: 22981285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles.
    Liu R; Zhao D
    Chemosphere; 2007 Aug; 68(10):1867-76. PubMed ID: 17462708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils.
    Pan G; Li L; Zhao D; Chen H
    Environ Pollut; 2010 Jan; 158(1):35-40. PubMed ID: 19732999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of nZVI mobility in a field scale test.
    Kocur CM; Chowdhury AI; Sakulchaicharoen N; Boparai HK; Weber KP; Sharma P; Krol MM; Austrins L; Peace C; Sleep BE; O'Carroll DM
    Environ Sci Technol; 2014; 48(5):2862-9. PubMed ID: 24479900
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of pH on manganese removal by magnetic microparticles in solution.
    Funes A; de Vicente J; Cruz-Pizarro L; de Vicente I
    Water Res; 2014 Apr; 53():110-22. PubMed ID: 24509345
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers.
    He F; Zhao D
    Environ Sci Technol; 2007 Sep; 41(17):6216-21. PubMed ID: 17937305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.
    Zhao X; Liu W; Cai Z; Han B; Qian T; Zhao D
    Water Res; 2016 Sep; 100():245-266. PubMed ID: 27206054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.
    Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N
    Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.
    Gibson BD; Blowes DW; Lindsay MB; Ptacek CJ
    J Hazard Mater; 2012 Nov; 241-242():92-100. PubMed ID: 23040313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Batch and column tests of metal mobilization in soil impacted by landfill leachate.
    Di Palma L; Mecozzi R
    Waste Manag; 2010; 30(8-9):1594-9. PubMed ID: 20413290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of iron sulfide particles for groundwater and soil remediation: A review.
    Gong Y; Tang J; Zhao D
    Water Res; 2016 Feb; 89():309-20. PubMed ID: 26707732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.
    Gong Y; Wang L; Liu J; Tang J; Zhao D
    Sci Total Environ; 2016 Aug; 562():191-200. PubMed ID: 27100000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems.
    Pettine M; Gennari F; Campanella L
    Chemosphere; 2013 Jan; 90(2):245-50. PubMed ID: 22858257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.
    Xie X; Wang Y; Pi K; Liu C; Li J; Liu Y; Wang Z; Duan M
    Sci Total Environ; 2015 Sep; 527-528():38-46. PubMed ID: 25956146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of iron- and manganese-cemented redoximorphic aggregates in wetland soils contaminated with mine wastes.
    Hickey PJ; McDaniel PA; Strawn DG
    J Environ Qual; 2008; 37(6):2375-85. PubMed ID: 18948492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.