These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2557821)

  • 1. Secondary structural features of the bacteriophage Mu-encoded A and B transposition proteins.
    Chaconas G; McCubbin WD; Kay CM
    Biochem J; 1989 Oct; 263(1):19-23. PubMed ID: 2557821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations.
    Surette MG; Harkness T; Chaconas G
    J Biol Chem; 1991 Feb; 266(5):3118-24. PubMed ID: 1847140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of bacteriophage mu transposition.
    Mizuuchi K; Craigie R
    Annu Rev Genet; 1986; 20():385-429. PubMed ID: 3028246
    [No Abstract]   [Full Text] [Related]  

  • 4. The amino terminus of the bacteriophage D108 transposase protein contains a two-component sequence-specific DNA-binding domain.
    Tolias PP; Dubow MS
    Virology; 1987 Mar; 157(1):117-26. PubMed ID: 3029952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains.
    Leung PC; Harshey RM
    J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous expression of a bacteriophage Mu transposase and repressor: a way of preventing killing due to mini-Mu replication.
    Toussaint A; Expert D; Desmet L
    Mol Microbiol; 1991 Aug; 5(8):2011-9. PubMed ID: 1662754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposition studies of mini-Mu plasmids constructed from the chemically synthesized ends of bacteriophage Mu.
    Patterson TA; Court DL; Dubuc G; Michniewicz JJ; Goodchild J; Bukhari AI; Narang SA
    Gene; 1986; 50(1-3):101-9. PubMed ID: 3034727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase.
    Clubb RT; Omichinski JG; Savilahti H; Mizuuchi K; Gronenborn AM; Clore GM
    Structure; 1994 Nov; 2(11):1041-8. PubMed ID: 7881904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108.
    Burns CM; Chan HL; DuBow MS
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6092-6. PubMed ID: 2166943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Transposition immunity in bacteriophage Mu. The effect of a mutation at the kil gene on the establishment of immunity].
    Mogutov MA; Velikodvorskaia GA; Kobets NS; Piruzian ES
    Genetika; 1985 Jun; 21(6):927-35. PubMed ID: 2993102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bacteriophage Mu transposase contains a fragment with primary structure similar to that of protein VPg covalently linked with poliovirus RNA].
    Gorbalenia AE; Donchenko AP; Kunin EV; Blinov VM
    Mol Gen Mikrobiol Virusol; 1987 Sep; (9):38-41. PubMed ID: 2828941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis-acting proteins.
    McFall E
    J Bacteriol; 1986 Aug; 167(2):429-32. PubMed ID: 3015868
    [No Abstract]   [Full Text] [Related]  

  • 13. A domain sharing model for active site assembly within the Mu A tetramer during transposition: the enhancer may specify domain contributions.
    Yang JY; Kim K; Jayaram M; Harshey RM
    EMBO J; 1995 May; 14(10):2374-84. PubMed ID: 7774595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic aspects of DNA transposition.
    Haniford DB; Chaconas G
    Curr Opin Genet Dev; 1992 Oct; 2(5):698-704. PubMed ID: 1333854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the att DNA-binding domain of phage Mu transposase.
    Kim K; Harshey RM
    Nucleic Acids Res; 1995 Oct; 23(19):3937-43. PubMed ID: 7479039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites.
    Groenen MA; Vollering M; Krijgsman P; van Drunen K; van de Putte P
    Nucleic Acids Res; 1987 Nov; 15(21):8831-44. PubMed ID: 2825121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switch in the transposition products of Mu DNA mediated by proteins: Cointegrates versus simple insertions.
    Harshey RM
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):2012-6. PubMed ID: 6300888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposition of Mu DNA: joining of Mu to target DNA can be uncoupled from cleavage at the ends of Mu.
    Craigie R; Mizuuchi K
    Cell; 1987 Nov; 51(3):493-501. PubMed ID: 2822259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac.
    van Drunen CM; Mientjes E; van Zuylen O; van de Putte P; Goosen N
    Nucleic Acids Res; 1994 Mar; 22(5):773-9. PubMed ID: 8139917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein.
    Tolias PP; DuBow MS
    J Mol Recognit; 1989 Apr; 1(4):172-8. PubMed ID: 2561072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.