These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
4. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236 [TBL] [Abstract][Full Text] [Related]
5. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
6. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. Xie W; Walkenfort B; Schlücker S J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150 [TBL] [Abstract][Full Text] [Related]
7. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering. Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352 [TBL] [Abstract][Full Text] [Related]
8. In situ identification of crystal facet-mediated chemical reactions on tetrahexahedral gold nanocrystals using surface-enhanced Raman spectroscopy. Lang X; You T; Yin P; Tan E; Zhang Y; Huang Y; Zhu H; Ren B; Guo L Phys Chem Chem Phys; 2013 Nov; 15(44):19337-42. PubMed ID: 24121935 [TBL] [Abstract][Full Text] [Related]
9. Size-controllable synthesis of surface-enhanced Raman scattering-active gold nanoparticles coated on TiO2. Kuo TC; Hsu TC; Liu YC; Yang KH Analyst; 2012 Aug; 137(16):3847-53. PubMed ID: 22763981 [TBL] [Abstract][Full Text] [Related]
10. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Zhang K; Zhao J; Ji J; Li Y; Liu B Anal Chem; 2015 Sep; 87(17):8702-8. PubMed ID: 26267841 [TBL] [Abstract][Full Text] [Related]
11. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering. Zhang K; Yao S; Li G; Hu Y Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806 [TBL] [Abstract][Full Text] [Related]
13. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Yang X; Zhong H; Zhu Y; Shen J; Li C Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100 [TBL] [Abstract][Full Text] [Related]
14. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
15. Planar monolithic porous polymer layers functionalized with gold nanoparticles as large-area substrates for sensitive surface-enhanced Raman scattering sensing of bacteria. Cao Y; Lv M; Xu H; Svec F; Tan T; Lv Y Anal Chim Acta; 2015 Oct; 896():111-9. PubMed ID: 26481994 [TBL] [Abstract][Full Text] [Related]
16. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. Chang CC; Yang KH; Liu YC; Hsu TC Colloids Surf B Biointerfaces; 2012 May; 93():169-73. PubMed ID: 22244302 [TBL] [Abstract][Full Text] [Related]
17. A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy. Fang J; Lebedkin S; Yang S; Hahn H Chem Commun (Camb); 2011 May; 47(18):5157-9. PubMed ID: 21431212 [TBL] [Abstract][Full Text] [Related]
18. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
19. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X; Chen Y; Qin M; Chen Y; Yang L; Zhang H; Tian Y Talanta; 2013 Dec; 117():203-8. PubMed ID: 24209331 [TBL] [Abstract][Full Text] [Related]
20. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering. Qiao Y; Chen H; Lin Y; Huang J Langmuir; 2011 Sep; 27(17):11090-7. PubMed ID: 21761928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]