These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25578369)

  • 1. Lipid-hydrogel films for sustained drug release.
    Kulkarni CV; Moinuddin Z; Patil-Sen Y; Littlefield R; Hood M
    Int J Pharm; 2015 Feb; 479(2):416-21. PubMed ID: 25578369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of nanostructured lipid particles in polysaccharide films.
    Kulkarni CV; Tomšič M; Glatter O
    Langmuir; 2011 Aug; 27(15):9541-50. PubMed ID: 21668004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of pore forming agents.
    Selvakumaran S; Muhamad II; Abd Razak SI
    Carbohydr Polym; 2016 Jan; 135():207-14. PubMed ID: 26453870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. γ-Irradiated chitosan based injectable hydrogels for controlled release of drug (Montelukast sodium).
    Hafeez S; Islam A; Gull N; Ali A; Khan SM; Zia S; Anwar K; Khan SU; Jamil T
    Int J Biol Macromol; 2018 Jul; 114():890-897. PubMed ID: 29458102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels.
    Rasool A; Ata S; Islam A; Rizwan M; Azeem MK; Mehmood A; Khan RU; Qureshi AUR; Mahmood HA
    Int J Biol Macromol; 2020 Mar; 147():67-78. PubMed ID: 31926227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites.
    Mahdavinia GR; Karimi MH; Soltaniniya M; Massoumi B
    Int J Biol Macromol; 2019 Apr; 126():443-453. PubMed ID: 30594616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.
    Li P; Dou XQ; Tang YT; Zhu S; Gu J; Feng CL; Zhang D
    J Colloid Interface Sci; 2012 Dec; 387(1):115-22. PubMed ID: 22958852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release.
    Mahdavinia GR; Etemadi H
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():250-60. PubMed ID: 25491827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.
    Zhong T; Jiang Z; Wang P; Bie S; Zhang F; Zuo B
    Int J Pharm; 2015 Oct; 494(1):264-70. PubMed ID: 26283278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of soy protein isolate/κ-carrageenan composite hydrogels as a delivery system for hydrophilic compounds: Monascus yellow.
    Zhang Q; Gu L; Su Y; Chang C; Yang Y; Li J
    Int J Biol Macromol; 2021 Mar; 172():281-288. PubMed ID: 33453255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite alginate hydrogels: An innovative approach for the controlled release of hydrophobic drugs.
    Josef E; Zilberman M; Bianco-Peled H
    Acta Biomater; 2010 Dec; 6(12):4642-9. PubMed ID: 20601237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, kappa-carrageenan, and mixed hydrogels.
    Tomsic M; Guillot S; Sagalowicz L; Leser ME; Glatter O
    Langmuir; 2009 Aug; 25(16):9525-34. PubMed ID: 19505132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocolloid-based nutraceutical delivery systems: Potential of κ-carrageenan hydrogel beads for sustained release of curcumin.
    Dahal P; Janaswamy S
    Food Res Int; 2024 May; 183():114223. PubMed ID: 38760142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.
    Wang C; He C; Tong Z; Liu X; Ren B; Zeng F
    Int J Pharm; 2006 Feb; 308(1-2):160-7. PubMed ID: 16359836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.
    El-Aassar MR; El Fawal GF; Kamoun EA; Fouda MM
    Int J Biol Macromol; 2015; 77():322-9. PubMed ID: 25840148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release of thiamin in a glassy κ-carrageenan/glucose syrup matrix.
    Panyoyai N; Bannikova A; Small DM; Kasapis S
    Carbohydr Polym; 2015 Jan; 115():723-31. PubMed ID: 25439954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable hydrophobic-hydrophilic hybrid hydrogels: swelling behavior and controlled drug release.
    Wu DQ; Chu CC
    J Biomater Sci Polym Ed; 2008; 19(4):411-29. PubMed ID: 18318955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled drug delivery attributes of co-polymer micelles and xanthan-O-carboxymethyl hydrogel particles.
    Maiti S; Mukherjee S
    Int J Biol Macromol; 2014 Sep; 70():37-43. PubMed ID: 24954271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postfabrication encapsulation of model protein drugs in a negatively thermosensitive hydrogel.
    Zhang Y; Zhu W; Wang B; Yu L; Ding J
    J Pharm Sci; 2005 Aug; 94(8):1676-84. PubMed ID: 15986466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres.
    Ma L; Liu M; Liu H; Chen J; Cui D
    Int J Pharm; 2010 Jan; 385(1-2):86-91. PubMed ID: 19879345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.