These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25578630)

  • 1. Statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale.
    Zhao YP; Yuan Q
    Nanoscale; 2015 Feb; 7(6):2561-7. PubMed ID: 25578630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study.
    Wang J; Chen S; Chen D
    Phys Chem Chem Phys; 2015 Nov; 17(45):30533-9. PubMed ID: 26524012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrowetting-based control of static droplet states on rough surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2007 Apr; 23(9):4918-24. PubMed ID: 17373831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.
    Roy R; Weibel JA; Garimella SV
    Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study on the wettability of a hydrophobic surface textured with nanoscale pillars.
    Zhang Z; Kim H; Ha MY; Jang J
    Phys Chem Chem Phys; 2014 Mar; 16(12):5613-21. PubMed ID: 24513852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces.
    Lundgren M; Allan NL; Cosgrove T
    Langmuir; 2007 Jan; 23(3):1187-94. PubMed ID: 17241031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Wu J; Snustad I; Ervik Å; Brunsvold A; He J; Zhang Z
    Nanotechnology; 2020 Mar; 31(24):245403. PubMed ID: 32126543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrowetting -- from statics to dynamics.
    Chen L; Bonaccurso E
    Adv Colloid Interface Sci; 2014 Aug; 210():2-12. PubMed ID: 24268972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neither Lippmann nor Young: enabling electrowetting modeling on structured dielectric surfaces.
    Chamakos NT; Kavousanakis ME; Papathanasiou AG
    Langmuir; 2014 Apr; 30(16):4662-70. PubMed ID: 24697520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting-Dominated Instability of Cassie Droplets on Superlyophobic Pillared Surfaces.
    Chen YC; Suzuki Y; Morimoto K
    Langmuir; 2019 Feb; 35(6):2013-2022. PubMed ID: 30644752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrowetting-induced dewetting transitions on superhydrophobic surfaces.
    Kumari N; Garimella SV
    Langmuir; 2011 Sep; 27(17):10342-6. PubMed ID: 21770408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting state transition of a liquid gallium drop at the nanoscale.
    Yan M; Li T; Zheng P; Wei R; Jiang Y; Li H
    Phys Chem Chem Phys; 2020 Jun; 22(21):11809-11816. PubMed ID: 32373866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions.
    Manukyan G; Oh JM; van den Ende D; Lammertink RG; Mugele F
    Phys Rev Lett; 2011 Jan; 106(1):014501. PubMed ID: 21231746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced hydrophobicity of rough polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Phys Chem B; 2007 Apr; 111(13):3336-41. PubMed ID: 17388480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.