These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25578716)

  • 1. Improving the finite element model accuracy of tissue engineering scaffolds produced by selective laser sintering.
    Lohfeld S; Cahill S; Doyle H; McHugh PE
    J Mater Sci Mater Med; 2015 Jan; 26(1):5376. PubMed ID: 25578716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications.
    Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S
    Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering.
    Cahill S; Lohfeld S; McHugh PE
    J Mater Sci Mater Med; 2009 Jun; 20(6):1255-62. PubMed ID: 19199109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications.
    Saito E; Kang H; Taboas JM; Diggs A; Flanagan CL; Hollister SJ
    J Mater Sci Mater Med; 2010 Aug; 21(8):2371-83. PubMed ID: 20524047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY; Sudarmadji N; Yu HY; Chua CK; Leong KF; Venkatraman SS; Boey YC; Tan LP
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects.
    Rumian Ł; Reczyńska K; Wrona M; Tiainen H; Haugen HJ; Pamuła E
    Acta Bioeng Biomech; 2015; 17(1):3-9. PubMed ID: 25951708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the mechanical behavior of a titanium scaffold with a repeating unit-cell substructure.
    Ryan G; McGarry P; Pandit A; Apatsidis D
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):894-906. PubMed ID: 19360888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.
    Tagliabue S; Rossi E; Baino F; Vitale-Brovarone C; Gastaldi D; Vena P
    J Mech Behav Biomed Mater; 2017 Jan; 65():248-255. PubMed ID: 27592293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H
    J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
    Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.