These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25578823)

  • 1. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors.
    Erdas O; Andac CA; Gurkan-Alp AS; Alpaslan FN; Buyukbingol E
    J Enzyme Inhib Med Chem; 2015; 30(5):809-15. PubMed ID: 25578823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An application of CIFAP for predicting the binding affinity of Chk1 inhibitors derived from 2-aminothiazole-4-carboxamide.
    Konyar D; Erdas O; Alpaslan FN; Buyukbingol E
    J Mol Recognit; 2017 Nov; 30(11):. PubMed ID: 28620979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Analysis of Binding Sites for Predicting Binding Affinities in Drug Design.
    Erdas-Cicek O; Atac AO; Gurkan-Alp AS; Buyukbingol E; Alpaslan FN
    J Chem Inf Model; 2019 Nov; 59(11):4654-4662. PubMed ID: 31596082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding.
    Kumar SP; Patel CN; Jha PC; Pandya HA
    Comput Biol Chem; 2017 Dec; 71():117-128. PubMed ID: 29153890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New description of protein-ligand interactions using a spherical self-organizing map.
    Hasegawa K; Funatsu K
    Bioorg Med Chem; 2012 Sep; 20(18):5410-5. PubMed ID: 22503362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-level structure-based pharmacophore modelling of caspase-3-non-peptide complexes: Extracting essential pharmacophore features and its application to virtual screening.
    Kumar SP; Jha PC
    Chem Biol Interact; 2016 Jul; 254():207-20. PubMed ID: 27291469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein-ligand binding affinities using multiple instance learning.
    Teramoto R; Kashima H
    J Mol Graph Model; 2010 Nov; 29(3):492-7. PubMed ID: 20965757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and in vitro evaluation of sulfonamide isatin Michael acceptors as small molecule inhibitors of caspase-6.
    Chu W; Rothfuss J; Chu Y; Zhou D; Mach RH
    J Med Chem; 2009 Apr; 52(8):2188-91. PubMed ID: 19326941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of 7-halogenated isatin sulfonamides: nonradioactive counterparts of caspase-3/-7 inhibitor-based potential radiopharmaceuticals for molecular imaging of apoptosis.
    Limpachayaporn P; Wagner S; Kopka K; Schober O; Schäfers M; Haufe G
    J Med Chem; 2014 Nov; 57(22):9383-95. PubMed ID: 25358116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of factor Xa inhibitors by machine learning methods.
    Lin HH; Han LY; Yap CW; Xue Y; Liu XH; Zhu F; Chen YZ
    J Mol Graph Model; 2007 Sep; 26(2):505-18. PubMed ID: 17418603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic chalcones and sulfonamides as new classes of Yersinia enterocolitica YopH tyrosine phosphatase inhibitors.
    Martins PG; Menegatti AC; Chiaradia-Delatorre LD; de Oliveira KN; Guido RV; Andricopulo AD; Vernal J; Yunes RA; Nunes RJ; Terenzi H
    Eur J Med Chem; 2013 Jun; 64():35-41. PubMed ID: 23639652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering ligand dependent degree of binding site closure and its implication in inhibitor design: A modeling study on human adenosine kinase.
    Bhutoria S; Ghoshal N
    J Mol Graph Model; 2010 Feb; 28(6):577-91. PubMed ID: 20089430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists.
    Buyukbingol E; Sisman A; Akyildiz M; Alparslan FN; Adejare A
    Bioorg Med Chem; 2007 Jun; 15(12):4265-82. PubMed ID: 17434739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.
    Li S; Xi L; Wang C; Li J; Lei B; Liu H; Yao X
    J Comput Chem; 2009 Apr; 30(6):900-9. PubMed ID: 18785151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics.
    Nowosielski M; Hoffmann M; Kuron A; Korycka-Machala M; Dziadek J
    J Comput Chem; 2013 Apr; 34(9):750-6. PubMed ID: 23233437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors.
    Gohlke H; Klebe G
    Angew Chem Int Ed Engl; 2002 Aug; 41(15):2644-76. PubMed ID: 12203463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity.
    Heck GS; Pintro VO; Pereira RR; de Ávila MB; Levin NMB; de Azevedo WF
    Curr Med Chem; 2017; 24(23):2459-2470. PubMed ID: 28641555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.