These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2557918)

  • 1. General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production.
    Barrette WC; Hannum DM; Wheeler WD; Hurst JK
    Biochemistry; 1989 Nov; 28(23):9172-8. PubMed ID: 2557918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viability and metabolic capability are maintained by Escherichia coli, Pseudomonas aeruginosa, and Streptococcus lactis at very low adenylate energy charge.
    Barrette WC; Hannum DM; Wheeler WD; Hurst JK
    J Bacteriol; 1988 Aug; 170(8):3655-9. PubMed ID: 3136145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli.
    Barrette WC; Albrich JM; Hurst JK
    Infect Immun; 1987 Oct; 55(10):2518-25. PubMed ID: 2820883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit sites of oxidative inactivation of Escherichia coli F1-ATPase by HOCl.
    Hannum DM; Barrette WC; Hurst JK
    Biochem Biophys Res Commun; 1995 Jul; 212(3):868-74. PubMed ID: 7626123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand.
    Liu J; Kandasamy V; Würtz A; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9509-9517. PubMed ID: 27344595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protonmotive force drives ATP synthesis in bacteria.
    Maloney PC; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae.
    King DA; Hannum DM; Qi JS; Hurst JK
    Arch Biochem Biophys; 2004 Mar; 423(1):170-81. PubMed ID: 14871479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit rotation in Escherichia coli FoF1-ATP synthase during oxidative phosphorylation.
    Zhou Y; Duncan TM; Cross RL
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10583-7. PubMed ID: 9380678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of resistance of CF and non-CF pathogens to hydrogen peroxide and hypochlorous acid oxidants in vitro.
    Bonvillain RW; Painter RG; Ledet EM; Wang G
    BMC Microbiol; 2011 May; 11():112. PubMed ID: 21599970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the adenine nucleotide and inorganic phosphate content of Escherichia coli F1-ATPase during ATP synthesis in dimethyl sulphoxide.
    Beharry S; Bragg PD
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):603-6. PubMed ID: 1388355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex effects of macrolide venturicidins on bacterial F-ATPases likely contribute to their action as antibiotic adjuvants.
    Milgrom YM; Duncan TM
    Sci Rep; 2021 Jul; 11(1):13631. PubMed ID: 34211053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli.
    Albrich JM; Gilbaugh JH; Callahan KB; Hurst JK
    J Clin Invest; 1986 Jul; 78(1):177-84. PubMed ID: 3013936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. atp Mutants of Escherichia coli fail to grow on succinate due to a transport deficiency.
    Boogerd FC; Boe L; Michelsen O; Jensen PR
    J Bacteriol; 1998 Nov; 180(22):5855-9. PubMed ID: 9811641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon and energy metabolism of atp mutants of Escherichia coli.
    Jensen PR; Michelsen O
    J Bacteriol; 1992 Dec; 174(23):7635-41. PubMed ID: 1447134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis.
    van den Berg van Saparoea HB; Lubelski J; van Merkerk R; Mazurkiewicz PS; Driessen AJ
    Biochemistry; 2005 Dec; 44(51):16931-8. PubMed ID: 16363806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitative kinetic model of ATP hydrolysis-synthesis by membrane H+-ATPase].
    Kister AE; Mironov AA; Drozdov-Tikhomirov LV
    Mol Biol (Mosk); 1984; 18(6):1476-85. PubMed ID: 6240592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
    Koebmann BJ; Solem C; Pedersen MB; Nilsson D; Jensen PR
    Appl Environ Microbiol; 2002 Sep; 68(9):4274-82. PubMed ID: 12200276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.