BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25579435)

  • 1. Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.
    Wang Y; Tu S; Steffen D; Xiong M
    J Pharm Pharm Sci; 2014; 17(4):583-602. PubMed ID: 25579435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitumor effect of liposomal histone deacetylase inhibitor-lipid conjugates in vitro.
    Hattori Y; Nagaoka Y; Kubo M; Yamasaku H; Ishii Y; Okita H; Nakano H; Uesato S; Maitani Y
    Chem Pharm Bull (Tokyo); 2011; 59(11):1386-92. PubMed ID: 22041075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced pharmacodynamic and antitumor properties of a histone deacetylase inhibitor encapsulated in liposomes or ErbB2-targeted immunoliposomes.
    Drummond DC; Marx C; Guo Z; Scott G; Noble C; Wang D; Pallavicini M; Kirpotin DB; Benz CC
    Clin Cancer Res; 2005 May; 11(9):3392-401. PubMed ID: 15867240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, Characterization, and In Vitro Pharmacodynamics and Pharmacokinetics Evaluation of PEGylated Urolithin A Liposomes.
    Yi S; Zhang C; Hu J; Meng Y; Chen L; Yu H; Li S; Wang G; Zheng G; Qiu Z
    AAPS PharmSciTech; 2021 Jan; 22(1):26. PubMed ID: 33404864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy.
    Urbinati G; Marsaud V; Plassat V; Fattal E; Lesieur S; Renoir JM
    Int J Pharm; 2010 Sep; 397(1-2):184-93. PubMed ID: 20603204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological characterization of histone deacetylase inhibitor and tumor cell-growth inhibition properties of new benzofuranone compounds.
    Blanquart C; François M; Charrier C; Bertrand P; Gregoire M
    Curr Cancer Drug Targets; 2011 Oct; 11(8):919-28. PubMed ID: 21762083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loading 3-deazaneplanocin A into pegylated unilamellar liposomes by forming transient phenylboronic acid-drug complex and its pharmacokinetic features in Sprague-Dawley rats.
    Sun F; Li J; Yu Q; Chan E
    Eur J Pharm Biopharm; 2012 Feb; 80(2):323-31. PubMed ID: 22061261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.
    Mohamed EA; Zhao Y; Meshali MM; Remsberg CM; Borg TM; Foda AM; Takemoto JK; Sayre CL; Martinez SE; Davies NM; Forrest ML
    J Pharm Sci; 2012 Oct; 101(10):3787-98. PubMed ID: 22806441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEGylated liposomes as delivery systems for Gambogenic acid: Characterization and in vitro/in vivo evaluation.
    Tang X; Sun J; Ge T; Zhang K; Gui Q; Zhang S; Chen W
    Colloids Surf B Biointerfaces; 2018 Dec; 172():26-36. PubMed ID: 30125771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions.
    Rosato RR; Almenara JA; Maggio SC; Coe S; Atadja P; Dent P; Grant S
    Mol Cancer Ther; 2008 Oct; 7(10):3285-97. PubMed ID: 18852132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin.
    Sun Y; Zhao Y
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7677-84. PubMed ID: 23421127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular vorinostat accumulation and its relationship to histone deacetylase activity in soft tissue sarcoma patients.
    Burhenne J; Liu L; Heilig CE; Meid AD; Leisen M; Schmitt T; Kasper B; Haefeli WE; Mikus G; Egerer G
    Cancer Chemother Pharmacol; 2017 Aug; 80(2):433-439. PubMed ID: 28612091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation.
    Yang T; Cui FD; Choi MK; Cho JW; Chung SJ; Shim CK; Kim DD
    Int J Pharm; 2007 Jun; 338(1-2):317-26. PubMed ID: 17368984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelated Vorinostat with inner-lysosome triggered release for tumor-targeting chemotherapy.
    Guo C; Wang Q; Zhang X; Lu F; Sun M; Zeng P; Sun L; She L; Wang B; Zhang Y; Wang C; Ma Z; Yang F
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111144. PubMed ID: 32535244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antitumor effects of a novel phenylbutyrate-based histone deacetylase inhibitor, (S)-HDAC-42, in prostate cancer.
    Kulp SK; Chen CS; Wang DS; Chen CY; Chen CS
    Clin Cancer Res; 2006 Sep; 12(17):5199-206. PubMed ID: 16951239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEGylated Liposomes of Meloxicam: Optimization by Quality by Design, in vitro Characterization and Cytotoxicity Evaluation.
    Shaji J; Menon I
    Pharm Nanotechnol; 2017; 5(2):119-137. PubMed ID: 28462699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric micelles of suberoylanilide hydroxamic acid to enhance the anticancer potential in vitro and in vivo.
    Kiran Rompicharla SV; Trivedi P; Kumari P; Ghanta P; Ghosh B; Biswas S
    Nanomedicine (Lond); 2017 Jan; 12(1):43-58. PubMed ID: 27879153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex.
    Kim JY; Shim G; Choi HW; Park J; Chung SW; Kim S; Kim K; Kwon IC; Kim CW; Kim SY; Yang VC; Oh YK; Byun Y
    Biomaterials; 2012 Jun; 33(17):4424-30. PubMed ID: 22425551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetics of temoporfin-loaded liposome formulations: correlation of liposome and temoporfin blood concentration.
    Decker C; Schubert H; May S; Fahr A
    J Control Release; 2013 Mar; 166(3):277-85. PubMed ID: 23313962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Hydroxamic Acids Incorporating 1-((1H-1,2,3-Triazol-4-yl)methyl)- 3-substituted-2-oxoindolines: Synthesis, Biological Evaluation and SAR Analysis.
    Dung DTM; Huan NV; Cam DM; Hieu DC; Hai PT; Huong LT; Kim J; Choi JE; Kang JS; Han SB; Nam NH
    Med Chem; 2018; 14(8):831-850. PubMed ID: 29807520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.