These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25579496)

  • 1. Molecularly "wired" cholesterol oxidase for biosensing.
    Leonida MD; Aurian-Blajeni B
    Protein J; 2015 Feb; 34(1):68-72. PubMed ID: 25579496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.
    Vidal JC; Espuelas J; Castillo JR
    Anal Biochem; 2004 Oct; 333(1):88-98. PubMed ID: 15351284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary X-ray analysis of cholesterol oxidase from Brevibacterium sterolicum containing covalently bound FAD.
    Croteau N; Vrielink A
    J Struct Biol; 1996; 116(2):317-9. PubMed ID: 8812988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron spin echo envelope modulation studies of the semiquinone anion radical of cholesterol oxidase from Brevibacterium sterolicum.
    Medina M; Vrielink A; Cammack R
    FEBS Lett; 1997 Jan; 400(2):247-51. PubMed ID: 9001407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.
    Manjunatha R; Shivappa Suresh G; Melo JS; D'Souza SF; Venkatesha TV
    Talanta; 2012 Sep; 99():302-9. PubMed ID: 22967556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevance of the flavin binding to the stability and folding of engineered cholesterol oxidase containing noncovalently bound FAD.
    Caldinelli L; Iametti S; Barbiroli A; Fessas D; Bonomi F; Piubelli L; Molla G; Pollegioni L
    Protein Sci; 2008 Mar; 17(3):409-19. PubMed ID: 18218720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase.
    Lim L; Molla G; Guinn N; Ghisla S; Pollegioni L; Vrielink A
    Biochem J; 2006 Nov; 400(1):13-22. PubMed ID: 16856877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis.
    Sun Y; Yang H; Wang W
    Biotechnol Lett; 2011 Oct; 33(10):2049-55. PubMed ID: 21701916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel biosensor based on a polypyrrole-dodecylbenzene sulphonate (PPy-DBS) film for the determination of amperometric cholesterol.
    Özer BO; Çete S
    Artif Cells Nanomed Biotechnol; 2017 Jun; 45(4):824-832. PubMed ID: 27571602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases.
    Li J; Vrielink A; Brick P; Blow DM
    Biochemistry; 1993 Nov; 32(43):11507-15. PubMed ID: 8218217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor.
    Singh S; Singhal R; Malhotra BD
    Anal Chim Acta; 2007 Jan; 582(2):335-43. PubMed ID: 17386511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol oxidase from Brevibacterium sterolicum. The relationship between covalent flavinylation and redox properties.
    Motteran L; Pilone MS; Molla G; Ghisla S; Pollegioni L
    J Biol Chem; 2001 May; 276(21):18024-30. PubMed ID: 11359791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically modified Sepharose as support for the immobilization of cholesterol oxidase.
    Yang H; Chen Y; Xin Y; Zhang L; Zhang Y; Wang W
    J Microbiol Biotechnol; 2013 Sep; 23(9):1212-20. PubMed ID: 23711516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.
    Gholivand MB; Khodadadian M
    Biosens Bioelectron; 2014 Mar; 53():472-8. PubMed ID: 24211460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational site-directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase.
    Harb LH; Arooj M; Vrielink A; Mancera RL
    Proteins; 2017 Sep; 85(9):1645-1655. PubMed ID: 28508424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flower like Bi structures on Pt surface facilitating effective cholesterol biosensing.
    V C S; Berchmans S
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():183-189. PubMed ID: 27127043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing.
    Zhu L; Xu L; Tan L; Tan H; Yang S; Yao S
    Talanta; 2013 Mar; 106():192-9. PubMed ID: 23598116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of cholesterol oxidase on cellulose acetate membrane for free cholesterol biosensor development.
    Wang S; Li S; Yu Y
    Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(3):413-25. PubMed ID: 15508278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor.
    Tsujimura S; Kojima S; Kano K; Ikeda T; Sato M; Sanada H; Omura H
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):654-9. PubMed ID: 16556981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor.
    Safavi A; Farjami F
    Biosens Bioelectron; 2011 Jan; 26(5):2547-52. PubMed ID: 21145225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.