These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 25579770)
1. Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes--a Monte Carlo approach. Clavier A; Seijo M; Carnal F; Stoll S Phys Chem Chem Phys; 2015 Feb; 17(6):4346-53. PubMed ID: 25579770 [TBL] [Abstract][Full Text] [Related]
2. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study. Seijo M; Ulrich S; Filella M; Buffle J; Stoll S Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489 [TBL] [Abstract][Full Text] [Related]
3. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface. Seijo M; Ulrich S; Filella M; Buffle J; Stoll S J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618 [TBL] [Abstract][Full Text] [Related]
4. Effect of Surface and Salt Properties on the Ion Distribution around Spherical Nanoparticles: Monte Carlo Simulations. Clavier A; Carnal F; Stoll S J Phys Chem B; 2016 Aug; 120(32):7988-97. PubMed ID: 27459187 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations. Carnal F; Stoll S J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies. Zarzycki P J Colloid Interface Sci; 2007 Feb; 306(2):328-36. PubMed ID: 17125782 [TBL] [Abstract][Full Text] [Related]
7. Nanoparticle adsorption on a weak polyelectrolyte. Stiffness, pH, charge mobility, and ionic concentration effects investigated by Monte Carlo simulations. Ulrich S; Seijo M; Laguecir A; Stoll S J Phys Chem B; 2006 Oct; 110(42):20954-64. PubMed ID: 17048913 [TBL] [Abstract][Full Text] [Related]
8. Conformational transitions of weak polyacids grafted to nanoparticles. Barr SA; Panagiotopoulos AZ J Chem Phys; 2012 Oct; 137(14):144704. PubMed ID: 23061858 [TBL] [Abstract][Full Text] [Related]
9. Effective interaction between charged nanoparticles and DNA. Paillusson F; Dahirel V; Jardat M; Victor JM; Barbi M Phys Chem Chem Phys; 2011 Jul; 13(27):12603-13. PubMed ID: 21670822 [TBL] [Abstract][Full Text] [Related]
10. A semi-grand canonical Monte Carlo simulation model for ion binding to ionizable surfaces: proton binding of carboxylated latex particles as a case study. Madurga S; Rey-Castro C; Pastor I; Vilaseca E; David C; Garcés JL; Puy J; Mas F J Chem Phys; 2011 Nov; 135(18):184103. PubMed ID: 22088048 [TBL] [Abstract][Full Text] [Related]
11. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin. Wahle CW; Martini KM; Hollenbeck DM; Langner A; Ross DS; Hamilton JF; Thurston GM Phys Rev E; 2017 Sep; 96(3-1):032415. PubMed ID: 29346981 [TBL] [Abstract][Full Text] [Related]
12. Titration of hydrophobic polyelectrolytes using Monte Carlo simulations. Ulrich S; Laguecir A; Stoll S J Chem Phys; 2005 Mar; 122(9):094911. PubMed ID: 15836185 [TBL] [Abstract][Full Text] [Related]
13. Dielectric discontinuity effects on the adsorption of a linear polyelectrolyte at the surface of a neutral nanoparticle. Seijo M; Pohl M; Ulrich S; Stoll S J Chem Phys; 2009 Nov; 131(17):174704. PubMed ID: 19895032 [TBL] [Abstract][Full Text] [Related]
14. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach. Zarzycki P; Charmas R; Szabelski P J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713 [TBL] [Abstract][Full Text] [Related]
15. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations. Holmberg JP; Ahlberg E; Bergenholtz J; Hassellöv M; Abbas Z J Colloid Interface Sci; 2013 Oct; 407():168-76. PubMed ID: 23859811 [TBL] [Abstract][Full Text] [Related]
16. Surface charge density and electrokinetic potential of highly charged minerals: experiments and Monte Carlo simulations on calcium silicate hydrate. Labbez C; Jönsson B; Pochard I; Nonat A; Cabane B J Phys Chem B; 2006 May; 110(18):9219-30. PubMed ID: 16671737 [TBL] [Abstract][Full Text] [Related]
17. Anatase nanoparticle surface reactivity in NaCl media: a CD-MUSIC model interpretation of combined experimental and density functional theory studies. Ridley MK; Machesky ML; Kubicki JD Langmuir; 2013 Jul; 29(27):8572-83. PubMed ID: 23745739 [TBL] [Abstract][Full Text] [Related]
18. A monte carlo study of weak polyampholytes: stiffness and primary structure influences on titration curves and chain conformations. Ulrich S; Seijo M; Stoll S J Phys Chem B; 2007 Jul; 111(29):8459-67. PubMed ID: 17411088 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations. Porus M; Labbez C; Maroni P; Borkovec M J Chem Phys; 2011 Aug; 135(6):064701. PubMed ID: 21842943 [TBL] [Abstract][Full Text] [Related]
20. Green's function for a spherical dielectric discontinuity and its application to simulation. Linse P; Lue L J Chem Phys; 2014 Jan; 140(4):044903. PubMed ID: 25669579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]