These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 25579881)
1. Recent progress in molecular genetic studies on the carotenoid transport system using cocoon-color mutants of the silkworm. Tsuchida K; Sakudoh T Arch Biochem Biophys; 2015 Apr; 572():151-157. PubMed ID: 25579881 [TBL] [Abstract][Full Text] [Related]
2. Analysis of a silkworm F₁ hybrid with yellow cocoon generated by crossing two white-cocoon strains: further evidences for the roles of Cameo2 and CBP in formation of yellow cocoon. Chai C; Zhang Y; Sun W; Ding G; Wang W; Liu Y; Dai F; Lu C Gene; 2014 Jan; 534(1):119-23. PubMed ID: 24157262 [TBL] [Abstract][Full Text] [Related]
3. A CD36-related transmembrane protein is coordinated with an intracellular lipid-binding protein in selective carotenoid transport for cocoon coloration. Sakudoh T; Iizuka T; Narukawa J; Sezutsu H; Kobayashi I; Kuwazaki S; Banno Y; Kitamura A; Sugiyama H; Takada N; Fujimoto H; Kadono-Okuda K; Mita K; Tamura T; Yamamoto K; Tsuchida K J Biol Chem; 2010 Mar; 285(10):7739-51. PubMed ID: 20053988 [TBL] [Abstract][Full Text] [Related]
4. CD36 homolog divergence is responsible for the selectivity of carotenoid species migration to the silk gland of the silkworm Bombyx mori. Sakudoh T; Kuwazaki S; Iizuka T; Narukawa J; Yamamoto K; Uchino K; Sezutsu H; Banno Y; Tsuchida K J Lipid Res; 2013 Feb; 54(2):482-95. PubMed ID: 23160179 [TBL] [Abstract][Full Text] [Related]
5. The basis for colorless hemolymph and cocoons in the Y-gene recessive Bombyx mori mutants: a defect in the cellular uptake of carotenoids. Tsuchida K; Katagiri C; Tanaka Y; Tabunoki H; Sato R; Maekawa H; Takada N; Banno Y; Fujii H; Wells MA; Jouni ZE J Insect Physiol; 2004 Oct; 50(10):975-83. PubMed ID: 15518665 [TBL] [Abstract][Full Text] [Related]
6. Combined effect of Cameo2 and CBP on the cellular uptake of lutein in the silkworm, Bombyx mori. Wang W; Huang MH; Dong XL; Chai CL; Pan CX; Tang H; Chen YH; Dai FY; Pan MH; Lu C PLoS One; 2014; 9(1):e86594. PubMed ID: 24475153 [TBL] [Abstract][Full Text] [Related]
7. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. Sakudoh T; Sezutsu H; Nakashima T; Kobayashi I; Fujimoto H; Uchino K; Banno Y; Iwano H; Maekawa H; Tamura T; Kataoka H; Tsuchida K Proc Natl Acad Sci U S A; 2007 May; 104(21):8941-6. PubMed ID: 17496138 [TBL] [Abstract][Full Text] [Related]
8. [Structure and expression analysis of cbp gene in different natural colored-cocoon strains of Bombyx mori]. Niu YS; Chen YD; Xi J; Sima YH; Duan XM; Liang HL; Gan LP; Xu SQ Yi Chuan; 2010 Sep; 32(9):942-50. PubMed ID: 20870616 [TBL] [Abstract][Full Text] [Related]
9. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. Tabunoki H; Higurashi S; Ninagi O; Fujii H; Banno Y; Nozaki M; Kitajima M; Miura N; Atsumi S; Tsuchida K; Maekawa H; Sato R FEBS Lett; 2004 Jun; 567(2-3):175-8. PubMed ID: 15178318 [TBL] [Abstract][Full Text] [Related]
10. Isolation, characterization, and cDNA sequence of a carotenoid binding protein from the silk gland of Bombyx mori larvae. Tabunoki H; Sugiyama H; Tanaka Y; Fujii H; Banno Y; Jouni ZE; Kobayashi M; Sato R; Maekawa H; Tsuchida K J Biol Chem; 2002 Aug; 277(35):32133-40. PubMed ID: 12052833 [TBL] [Abstract][Full Text] [Related]
11. BmStart1, a novel carotenoid-binding protein isoform from Bombyx mori, is orthologous to MLN64, a mammalian cholesterol transporter. Sakudoh T; Tsuchida K; Kataoka H Biochem Biophys Res Commun; 2005 Nov; 336(4):1125-35. PubMed ID: 16169523 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the carotenoid-binding protein of the Y-gene dominant mutants of Bombyx mori. Tsuchida K; Jouni ZE; Gardetto J; Kobayashi Y; Tabunoki H; Azuma M; Sugiyama H; Takada N; Maekawa H; Banno Y; Fujii H; Iwano H; Wells MA J Insect Physiol; 2004 Apr; 50(4):363-72. PubMed ID: 15081829 [TBL] [Abstract][Full Text] [Related]
13. Lipid transfer particle catalyzes transfer of carotenoids between lipophorins of Bombyx mori. Tsuchida K; Arai M; Tanaka Y; Ishihara R; Ryan RO; Maekawa H Insect Biochem Mol Biol; 1998 Dec; 28(12):927-34. PubMed ID: 9887509 [TBL] [Abstract][Full Text] [Related]
14. Identification and analysis of the pigment composition and sources in the colored cocoon of the silkworm, Bombyx mori, by HPLC-DAD. Zhu L; Zhang YQ J Insect Sci; 2014 Feb; 14():31. PubMed ID: 25373178 [TBL] [Abstract][Full Text] [Related]
15. The Potential of Natural Carotenoids-Containing Sericin of the Domestic Silkworm Liu S; Zhang Q; Zhou H; Zhang B; Yu M; Wang Y; Liu Y; Chai C Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612498 [TBL] [Abstract][Full Text] [Related]
16. Expression pattern and tissue localization of the class B scavenger receptor BmSCRBQ4 in Bombyx mori. Dong ZP; Chai CL; Dai FY; Pan MH; Huang P; Wang W; Liao PF; Liu M; Lu C Insect Sci; 2015 Dec; 22(6):739-47. PubMed ID: 25092485 [TBL] [Abstract][Full Text] [Related]
17. Microarray analysis of New Green Cocoon associated genes in silkworm, Bombyx mori. Lu YR; He SZ; Tong XL; Han MJ; Li CL; Li ZQ; Dai FY Insect Sci; 2016 Jun; 23(3):386-95. PubMed ID: 26936509 [TBL] [Abstract][Full Text] [Related]
18. Genetic variations involved in interindividual variability in carotenoid status. Borel P Mol Nutr Food Res; 2012 Feb; 56(2):228-40. PubMed ID: 21957063 [TBL] [Abstract][Full Text] [Related]
19. [Mapping of the yellow inhibitor gene I in silkworm Bombyx mori using SSR markers]. Li X; Li MW; Guo QH; Xu AY; Huang YP; Guo XJ Yi Chuan; 2008 Aug; 30(8):1039-42. PubMed ID: 18779155 [TBL] [Abstract][Full Text] [Related]
20. Can the silkworm (Bombyx mori) be used as a human disease model? Tabunoki H; Bono H; Ito K; Yokoyama T Drug Discov Ther; 2016 Feb; 10(1):3-8. PubMed ID: 26853920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]