BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 25579891)

  • 1. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy.
    Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K
    J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility.
    Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S
    Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.
    Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG
    J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.
    Fu J; Kim HY; Miyazaki S
    J Mech Behav Biomed Mater; 2017 Jan; 65():716-723. PubMed ID: 27750162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys.
    Sun F; Hao YL; Nowak S; Gloriant T; Laheurte P; Prima F
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1864-72. PubMed ID: 22098885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.
    Sheremetyev V; Brailovski V; Prokoshkin S; Inaekyan K; Dubinskiy S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():935-44. PubMed ID: 26478389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and properties of cast binary Ti-Mo alloys.
    Ho WF; Ju CP; Lin JH
    Biomaterials; 1999 Nov; 20(22):2115-22. PubMed ID: 10555079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.
    Hu X; Wei Q; Li CY; Deng JY; Liu S; Zhang LY
    Biomed Mater; 2010 Oct; 5(5):054107. PubMed ID: 20876964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys.
    Nag S; Banerjee R; Stechschulte J; Fraser HL
    J Mater Sci Mater Med; 2005 Jul; 16(7):679-85. PubMed ID: 15965601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys.
    Wu J; Li H; Yuan B; Gao Y
    J Mech Behav Biomed Mater; 2017 Nov; 75():574-580. PubMed ID: 28863399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and properties of Ti-7.5Mo-xFe alloys.
    Lin DJ; Lin JH; Ju CP
    Biomaterials; 2002 Apr; 23(8):1723-30. PubMed ID: 11950042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.
    Kuroda PAB; Buzalaf MAR; Grandini CR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.
    Xue P; Li Y; Li K; Zhang D; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():179-86. PubMed ID: 25746260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.
    Tkachenko S; Datskevich O; Kulak L; Jacobson S; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2014 Nov; 39():61-72. PubMed ID: 25105238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys.
    Suyalatu ; Nomura N; Oya K; Tanaka Y; Kondo R; Doi H; Tsutsumi Y; Hanawa T
    Acta Biomater; 2010 Mar; 6(3):1033-8. PubMed ID: 19772932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.