BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 25579891)

  • 41. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
    Biesiekierski A; Ping D; Li Y; Lin J; Munir KS; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2017 Apr; 53():549-558. PubMed ID: 28163238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment.
    Kim HM; Takadama H; Kokubo T; Nishiguchi S; Nakamura T
    Biomaterials; 2000 Feb; 21(4):353-8. PubMed ID: 10656316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface properties and biocompatibility of sandblasted and acid-etched titanium-zirconium binary alloys with various compositions.
    Tan T; Zhao Q; Kuwae H; Ueno T; Chen P; Tsutsumi Y; Mizuno J; Hanawa T; Wakabayashi N
    Dent Mater J; 2022 Apr; 41(2):266-272. PubMed ID: 34866118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of C content on the mechanical properties of Ti-Zr coatings.
    Rodríguez-Hernández MG; Jiménez O; Alvarado-Hernández F; Flores M; Andrade E; Canto CE; Ávila C; Espinoza-Beltrán F
    J Mech Behav Biomed Mater; 2015 Sep; 49():269-76. PubMed ID: 26056996
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.
    Verissimo NC; Geilich BM; Oliveira HG; Caram R; Webster TJ
    J Biomed Mater Res A; 2015 Dec; 103(12):3757-63. PubMed ID: 26033413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.
    Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications.
    Bahl S; Das S; Suwas S; Chatterjee K
    J Mech Behav Biomed Mater; 2018 Feb; 78():124-133. PubMed ID: 29156291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. β-Type Zr-Nb-Ti biomedical materials with high plasticity and low modulus for hard tissue replacements.
    Nie L; Zhan Y; Hu T; Chen X; Wang C
    J Mech Behav Biomed Mater; 2014 Jan; 29():1-6. PubMed ID: 24036526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure, castability and mechanical properties of commercially pure and alloyed titanium cast in graphite mould.
    Cheng WW; Ju CP; Lin JH
    J Oral Rehabil; 2007 Jul; 34(7):528-40. PubMed ID: 17559621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.
    Zhao C; Pan F; Zhao S; Pan H; Song K; Tang A
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():245-51. PubMed ID: 26046288
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.
    Hao YL; Li SJ; Sun SY; Zheng CY; Yang R
    Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microstructure and selected mechanical properties of aged Ti-15Zr-based alloys for biomedical applications.
    Correa DRN; Kuroda PAB; Lourenço ML; Buzalaf MAR; Mendoza ME; Archanjo BS; Achete CA; Rocha LA; Grandini CR
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():762-771. PubMed ID: 30033311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical, physical, and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys.
    Ribeiro AL; Junior RC; Cardoso FF; Filho RB; Vaz LG
    J Mater Sci Mater Med; 2009 Aug; 20(8):1629-36. PubMed ID: 19337820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.