BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 25579983)

  • 1. Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes.
    Raychaudhuri B; Rayman P; Huang P; Grabowski M; Hambardzumyan D; Finke JH; Vogelbaum MA
    J Neurooncol; 2015 Apr; 122(2):293-301. PubMed ID: 25579983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue.
    Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Petersen-Baltussen HM; ter Laan M; Wesseling P; Adema GJ
    J Neuropathol Exp Neurol; 2015 May; 74(5):390-400. PubMed ID: 25853692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy.
    Finke J; Ko J; Rini B; Rayman P; Ireland J; Cohen P
    Int Immunopharmacol; 2011 Jul; 11(7):856-61. PubMed ID: 21315783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients.
    Dubinski D; Wölfer J; Hasselblatt M; Schneider-Hohendorf T; Bogdahn U; Stummer W; Wiendl H; Grauer OM
    Neuro Oncol; 2016 Jun; 18(6):807-18. PubMed ID: 26578623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model.
    Chae M; Peterson TE; Balgeman A; Chen S; Zhang L; Renner DN; Johnson AJ; Parney IF
    Neuro Oncol; 2015 Jul; 17(7):978-91. PubMed ID: 25537019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloid-Derived Suppressor Cells as an Immune Parameter in Patients with Concurrent Sunitinib and Stereotactic Body Radiotherapy.
    Chen HM; Ma G; Gildener-Leapman N; Eisenstein S; Coakley BA; Ozao J; Mandeli J; Divino C; Schwartz M; Sung M; Ferris R; Kao J; Wang LH; Pan PY; Ko EC; Chen SH
    Clin Cancer Res; 2015 Sep; 21(18):4073-4085. PubMed ID: 25922428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas.
    Flores-Toro JA; Luo D; Gopinath A; Sarkisian MR; Campbell JJ; Charo IF; Singh R; Schall TJ; Datta M; Jain RK; Mitchell DA; Harrison JK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1129-1138. PubMed ID: 31879345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma.
    Raychaudhuri B; Rayman P; Ireland J; Ko J; Rini B; Borden EC; Garcia J; Vogelbaum MA; Finke J
    Neuro Oncol; 2011 Jun; 13(6):591-9. PubMed ID: 21636707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A circulating subpopulation of monocytic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients.
    Vetsika EK; Koinis F; Gioulbasani M; Aggouraki D; Koutoulaki A; Skalidaki E; Mavroudis D; Georgoulias V; Kotsakis A
    J Immunol Res; 2014; 2014():659294. PubMed ID: 25436215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients.
    Jordan KR; Kapoor P; Spongberg E; Tobin RP; Gao D; Borges VF; McCarter MD
    Cancer Immunol Immunother; 2017 Apr; 66(4):503-513. PubMed ID: 28108766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice.
    Abe F; Younos I; Westphal S; Samson H; Scholar E; Dafferner A; Hoke TA; Talmadge JE
    Int Immunopharmacol; 2010 Jan; 10(1):140-5. PubMed ID: 19833232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients.
    Ko JS; Zea AH; Rini BI; Ireland JL; Elson P; Cohen P; Golshayan A; Rayman PA; Wood L; Garcia J; Dreicer R; Bukowski R; Finke JH
    Clin Cancer Res; 2009 Mar; 15(6):2148-57. PubMed ID: 19276286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells.
    Donkor MK; Lahue E; Hoke TA; Shafer LR; Coskun U; Solheim JC; Gulen D; Bishay J; Talmadge JE
    Int Immunopharmacol; 2009 Jul; 9(7-8):937-48. PubMed ID: 19362167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.
    Heine A; Schilling J; Grünwald B; Krüger A; Gevensleben H; Held SA; Garbi N; Kurts C; Brossart P; Knolle P; Diehl L; Höchst B
    Cancer Immunol Immunother; 2016 Mar; 65(3):273-82. PubMed ID: 26786874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14⁻/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer.
    Liu CY; Wang YM; Wang CL; Feng PH; Ko HW; Liu YH; Wu YC; Chu Y; Chung FT; Kuo CH; Lee KY; Lin SM; Lin HC; Wang CH; Yu CT; Kuo HP
    J Cancer Res Clin Oncol; 2010 Jan; 136(1):35-45. PubMed ID: 19572148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies.
    Ozao-Choy J; Ma G; Kao J; Wang GX; Meseck M; Sung M; Schwartz M; Divino CM; Pan PY; Chen SH
    Cancer Res; 2009 Mar; 69(6):2514-22. PubMed ID: 19276342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloid-derived suppressor cells adhere to physiologic STAT3- vs STAT5-dependent hematopoietic programming, establishing diverse tumor-mediated mechanisms of immunologic escape.
    Cohen PA; Ko JS; Storkus WJ; Spencer CD; Bradley JM; Gorman JE; McCurry DB; Zorro-Manrique S; Dominguez AL; Pathangey LB; Rayman PA; Rini BI; Gendler SJ; Finke JH
    Immunol Invest; 2012; 41(6-7):680-710. PubMed ID: 23017141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment.
    van Hooren L; Georganaki M; Huang H; Mangsbo SM; Dimberg A
    Oncotarget; 2016 Jul; 7(31):50277-50289. PubMed ID: 27385210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of immune regulatory cells with combined therapy of celecoxib and sunitinib in renal cell carcinoma.
    Zhao Q; Guo J; Wang G; Chu Y; Hu X
    Oncotarget; 2017 Jan; 8(1):1668-1677. PubMed ID: 27926489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function.
    Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Bossman SA; Ter Laan M; Wesseling P; Adema GJ
    Neuro Oncol; 2016 Sep; 18(9):1253-64. PubMed ID: 27006175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.