These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25579991)

  • 1. Tissue-level remodeling simulations of cancellous bone capture effects of in vivo loading in a rabbit model.
    Morgan TG; Bostrom MP; van der Meulen MC
    J Biomech; 2015 Mar; 48(5):875-82. PubMed ID: 25579991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of loading on cancellous bone in the rabbit.
    van der Meulen MC; Yang X; Morgan TG; Bostrom MP
    Clin Orthop Relat Res; 2009 Aug; 467(8):2000-6. PubMed ID: 19459022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancellous bone adaptation to in vivo loading in a rabbit model.
    van der Meulen MC; Morgan TG; Yang X; Baldini TH; Myers ER; Wright TM; Bostrom MP
    Bone; 2006 Jun; 38(6):871-7. PubMed ID: 16431171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.
    Kameo Y; Adachi T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):851-60. PubMed ID: 24174063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations.
    Villette CC; Phillips ATM
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2077-2091. PubMed ID: 28795282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Clinical Biomechanics Award 2012 - presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment.
    Levchuk A; Zwahlen A; Weigt C; Lambers FM; Badilatti SD; Schulte FA; Kuhn G; Müller R
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):355-62. PubMed ID: 24467970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
    Adachi T; Tsubota K; Tomita Y; Hollister SJ
    J Biomech Eng; 2001 Oct; 123(5):403-9. PubMed ID: 11601724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New predictive model for monitoring bone remodeling.
    Bougherara H; Klika V; Marsík F; Marík IA; Yahia L
    J Biomed Mater Res A; 2010 Oct; 95(1):9-24. PubMed ID: 20540092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.
    Geraldes DM; Modenese L; Phillips AT
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1029-42. PubMed ID: 26578078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing microscopic features of bone remodeling into a macroscopic model based on biological rationales of bone adaptation.
    Kim YK; Kameo Y; Tanaka S; Adachi T
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1697-1708. PubMed ID: 28523374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.
    Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP
    Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trabecular bone adaptation to loading in a rabbit model is not magnitude-dependent.
    Yang X; Willie BM; Beach JM; Wright TM; van der Meulen MC; Bostrom MP
    J Orthop Res; 2013 Jun; 31(6):930-4. PubMed ID: 23423863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bone adaptive digital analysis for femur bone being in disuse and overload condition].
    Chen X; Gong X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1074-8. PubMed ID: 19024449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified theory for osteonal and hemi-osteonal remodeling.
    van Oers RF; Ruimerman R; Tanck E; Hilbers PA; Huiskes R
    Bone; 2008 Feb; 42(2):250-9. PubMed ID: 18063436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical loading causes site-specific anabolic effects on bone following exposure to ionizing radiation.
    Shirazi-Fard Y; Alwood JS; Schreurs AS; Castillo AB; Globus RK
    Bone; 2015 Dec; 81():260-269. PubMed ID: 26191778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.