These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 25580097)

  • 61. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer.
    Chang JE; Yoon IS; Sun PL; Yi E; Jheon S; Shim CK
    J Photochem Photobiol B; 2014 Nov; 140():49-56. PubMed ID: 25090224
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review.
    Nkune NW; Abrahamse H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830431
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Topical photodynamic therapy in dermatology].
    Grob M; Schmid-Grendelmeier P
    Ther Umsch; 1998 Aug; 55(8):529-32. PubMed ID: 9757821
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The advantages of aminolevulinic acid photodynamic therapy in dermatology.
    Taylor EL; Brown SB
    J Dermatolog Treat; 2002; 13 Suppl 1():S3-11. PubMed ID: 12060511
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Intracellular delivery and activation of the genetically encoded photosensitizer Killer Red by quantum dots encapsulated in polymeric micelles.
    Muthiah M; Park SH; Nurunnabi M; Lee J; Lee YK; Park H; Lee BI; Min JJ; Park IK
    Colloids Surf B Biointerfaces; 2014 Apr; 116():284-94. PubMed ID: 24495459
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Actively targeting D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer.
    Jiang D; Gao X; Kang T; Feng X; Yao J; Yang M; Jing Y; Zhu Q; Feng J; Chen J
    Nanoscale; 2016 Feb; 8(5):3100-18. PubMed ID: 26785758
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chlorin e6 Conjugated Poly(dopamine) Nanospheres as PDT/PTT Dual-Modal Therapeutic Agents for Enhanced Cancer Therapy.
    Zhang D; Wu M; Zeng Y; Wu L; Wang Q; Han X; Liu X; Liu J
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8176-87. PubMed ID: 25837008
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer].
    Roblero-Bartolón GV; Ramón-Gallegos E
    Gac Med Mex; 2015; 151(1):85-98. PubMed ID: 25739488
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functional Polymeric Systems as Delivery Vehicles for Methylene Blue in Photodynamic Therapy.
    Junqueira MV; Borghi-Pangoni FB; Ferreira SB; Rabello BR; Hioka N; Bruschi ML
    Langmuir; 2016 Jan; 32(1):19-27. PubMed ID: 26673856
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cellular uptake and photodynamic activity of protein nanocages containing methylene blue photosensitizing drug.
    Yan F; Zhang Y; Kim KS; Yuan HK; Vo-Dinh T
    Photochem Photobiol; 2010; 86(3):662-6. PubMed ID: 20132513
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Targeted photodynamic therapy--a promising strategy of tumor treatment.
    Bugaj AM
    Photochem Photobiol Sci; 2011 Jul; 10(7):1097-109. PubMed ID: 21547329
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer.
    Benito M; Martín V; Blanco MD; Teijón JM; Gómez C
    J Pharm Sci; 2013 Aug; 102(8):2760-9. PubMed ID: 23712859
    [TBL] [Abstract][Full Text] [Related]  

  • 73. pH- and NIR light responsive nanocarriers for combination treatment of chemotherapy and photodynamic therapy.
    Wang S; Yang W; Cui J; Li X; Dou Y; Su L; Chang J; Wang H; Li X; Zhang B
    Biomater Sci; 2016 Feb; 4(2):338-45. PubMed ID: 26623461
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Trojan horse monocyte-mediated delivery of conjugated polymer nanoparticles for improved photodynamic therapy of glioblastoma.
    Ibarra LE; Beaugé L; Arias-Ramos N; Rivarola VA; Chesta CA; López-Larrubia P; Palacios RE
    Nanomedicine (Lond); 2020 Jul; 15(17):1687-1707. PubMed ID: 32689873
    [No Abstract]   [Full Text] [Related]  

  • 76. Polymeric nanocarrier systems for photodynamic therapy.
    Li L; Huh KM
    Biomater Res; 2014; 18():19. PubMed ID: 26331070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Can nanotechnology potentiate photodynamic therapy?
    Huang YY; Sharma SK; Dai T; Chung H; Yaroslavsky A; Garcia-Diaz M; Chang J; Chiang LY; Hamblin MR
    Nanotechnol Rev; 2012 Mar; 1(2):111-146. PubMed ID: 26361572
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Super-Resolution Imaging of Intracellular Lipid Nanocarriers to Study Drug Delivery in Photodynamic Therapy.
    Scutigliani EM; Kochan JA; Desclos ECB; Jonker A; Heger M; Krawczyk PM
    Methods Mol Biol; 2022; 2451():703-709. PubMed ID: 35505042
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review.
    Angjelova A; Jovanova E; Polizzi A; Santonocito S; Lo Giudice A; Isola G
    J Clin Med; 2023 Oct; 12(21):. PubMed ID: 37959284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanotechnology in Modern Photodynamic Therapy of Cancer: A Review of Cellular Resistance Patterns Affecting the Therapeutic Response.
    Chizenga EP; Abrahamse H
    Pharmaceutics; 2020 Jul; 12(7):. PubMed ID: 32640564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.