These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 2558025)
1. NMDA receptor blockade in the periaqueductal grey prevents stress-induced analgesia in attacked mice. Siegfried B; de Souza RL Eur J Pharmacol; 1989 Sep; 168(2):239-42. PubMed ID: 2558025 [TBL] [Abstract][Full Text] [Related]
2. Naloxone injections into the periaqueductal grey area and arcuate nucleus block analgesia in defeated mice. Miczek KA; Thompson ML; Shuster L Psychopharmacology (Berl); 1985; 87(1):39-42. PubMed ID: 2932763 [TBL] [Abstract][Full Text] [Related]
3. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Javanmardi K; Parviz M; Sadr SS; Keshavarz M; Minaii B; Dehpour AR Clin Exp Pharmacol Physiol; 2005 Jul; 32(7):585-9. PubMed ID: 16026519 [TBL] [Abstract][Full Text] [Related]
4. Involvement of opioid receptors in N-methyl-D-aspartate-induced arterial hypertension in periaqueductal gray matter. Maione S; Leyva J; Pallotta M; Berrino L; De Novellis V; Rossi F Naunyn Schmiedebergs Arch Pharmacol; 1995 Jan; 351(1):87-92. PubMed ID: 7715745 [TBL] [Abstract][Full Text] [Related]
5. Interaction between metabotropic and NMDA glutamate receptors in the periaqueductal grey pain modulatory system. Berrino L; Oliva P; Rossi F; Palazzo E; Nobili B; Maione S Naunyn Schmiedebergs Arch Pharmacol; 2001 Nov; 364(5):437-43. PubMed ID: 11692227 [TBL] [Abstract][Full Text] [Related]
6. N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. I. Comparison of opiate receptor-deficient and opiate receptor-rich strains of mice. Marek P; Page GG; Ben-Eliyahu S; Liebeskind JC Brain Res; 1991 Jun; 551(1-2):293-6. PubMed ID: 1655162 [TBL] [Abstract][Full Text] [Related]
7. Role of NMDA receptors in hypothalamic facilitation of feline defensive rage elicited from the midbrain periaqueductal gray. Lu CL; Shaikh MB; Siegel A Brain Res; 1992 May; 581(1):123-32. PubMed ID: 1354005 [TBL] [Abstract][Full Text] [Related]
8. The periaqueductal grey is a critical site in the neuronal network for audiogenic seizures: modulation by GABA(A), NMDA and opioid receptors. N'Gouemo P; Faingold CL Epilepsy Res; 1999 May; 35(1):39-46. PubMed ID: 10232793 [TBL] [Abstract][Full Text] [Related]
9. Anxiogenic-like effects induced by NMDA receptor activation are prevented by inhibition of neuronal nitric oxide synthase in the periaqueductal gray in mice. Miguel TT; Nunes-de-Souza RL Brain Res; 2008 Nov; 1240():39-46. PubMed ID: 18793618 [TBL] [Abstract][Full Text] [Related]
10. NMDA receptors in the midbrain periaqueductal gray mediate hypothalamically evoked hissing behavior in the cat. Schubert K; Shaikh MB; Siegel A Brain Res; 1996 Jul; 726(1-2):80-90. PubMed ID: 8836548 [TBL] [Abstract][Full Text] [Related]
11. Antagonism of the non-opioid component of ethanol-induced analgesia by the NMDA receptor antagonist MK-801. Mogil JS; Marek P; Yirmiya R; Balian H; Sadowski B; Taylor AN; Liebeskind JC Brain Res; 1993 Jan; 602(1):126-30. PubMed ID: 8448649 [TBL] [Abstract][Full Text] [Related]
12. Antagonism of stimulation-produced analgesia by naloxone and N-methyl-D-aspartate: role of opioid and N-methyl-D-aspartate receptors. Mehta AK; Halder S; Khanna N; Tandon OP; Sharma KK Hum Exp Toxicol; 2012 Jan; 31(1):51-6. PubMed ID: 21803783 [TBL] [Abstract][Full Text] [Related]
13. Unravelling the dorsal periaqueductal grey matter NMDA receptors relevance in the nitric oxide-mediated panic‑like behaviour and defensive antinociception organised by the anterior hypothalamus of male mice. Falconi-Sobrinho LL; Dos Anjos-Garcia T; Hernandes PM; Rodrigues BMP; Almada RC; Coimbra NC Psychopharmacology (Berl); 2023 Feb; 240(2):319-335. PubMed ID: 36648509 [TBL] [Abstract][Full Text] [Related]
14. Opioid and non-opioid NMDA-mediated predator-induced analgesia in mice and the effects of parasitic infection. Kavaliers M; Colwell DD; Perrot-Sinal TS Brain Res; 1997 Aug; 766(1-2):11-8. PubMed ID: 9359582 [TBL] [Abstract][Full Text] [Related]
15. Genetic influences on brain stimulation-produced analgesia in mice: II. Correlation with brain opiate receptor concentration. Marek P; Yirmiya R; Liebeskind JC Brain Res; 1990 Jan; 507(1):155-7. PubMed ID: 2154297 [TBL] [Abstract][Full Text] [Related]
16. The NMDA receptor: central role in pain inhibition in rat periaqueductal gray. Jacquet YF Eur J Pharmacol; 1988 Sep; 154(3):271-6. PubMed ID: 2853058 [TBL] [Abstract][Full Text] [Related]
17. Sex differences in the inhibitory effects of the NMDA antagonist, MK-801, on morphine and stress-induced analgesia. Lipa SM; Kavaliers M Brain Res Bull; 1990 Apr; 24(4):627-30. PubMed ID: 2162721 [TBL] [Abstract][Full Text] [Related]
18. A role of periaqueductal grey NMDA receptors in mediating formalin-induced pain in the rat. Vaccarino AL; Clemmons HR; Mader GJ; Magnusson JE Neurosci Lett; 1997 Oct; 236(2):117-9. PubMed ID: 9404825 [TBL] [Abstract][Full Text] [Related]
20. Stress-induced analgesia prevents the development of the tonic, late phase of pain produced by subcutaneous formalin. Vaccarino AL; Marek P; Liebeskind JC Brain Res; 1992 Feb; 572(1-2):250-2. PubMed ID: 1319270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]