These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25580563)

  • 1. Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties.
    Yao M; Li Q; Hou G; Lu C; Cheng B; Wu K; Xu G; Yuan F; Ding F; Chen Y
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2856-66. PubMed ID: 25580563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cr-Doped Urchin-Like WO
    Ding Q; Wang Y; Guo P; Li J; Chen C; Wang T; Sun K; He D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Synthesis of Pure and Cr-Doped WO
    Sriram SR; Parne SR; Pothukanuri N; Joshi D; Edla DR
    ACS Omega; 2022 Dec; 7(51):47796-47805. PubMed ID: 36591164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Temperature H2S Detection with Hierarchical Cr-Doped WO3 Microspheres.
    Wang Y; Liu B; Xiao S; Wang X; Sun L; Li H; Xie W; Li Q; Zhang Q; Wang T
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9674-83. PubMed ID: 27008435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties.
    Zhang H; Wang S; Wang Y; Yang J; Gao X; Wang L
    Phys Chem Chem Phys; 2014 Jun; 16(22):10830-6. PubMed ID: 24760175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Au-embedded WO3 Nanowire Structure for Efficient Detection of CH4 and H2S.
    Vuong NM; Kim D; Kim H
    Sci Rep; 2015 Jun; 5():11040. PubMed ID: 26087355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal Synthesis of Co-Exposed-Faceted WO
    Niu X; Du Y; He J; Li X; Wen G
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A; Kuykendall TR; Chen W; Chen S; Zhang JZ
    J Phys Chem B; 2006 Dec; 110(50):25288-96. PubMed ID: 17165974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.
    Horprathum M; Srichaiyaperk T; Samransuksamer B; Wisitsoraat A; Eiamchai P; Limwichean S; Chananonnawathorn C; Aiempanakit K; Nuntawong N; Patthanasettakul V; Oros C; Porntheeraphat S; Songsiriritthigul P; Nakajima H; Tuantranont A; Chindaudom P
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22051-60. PubMed ID: 25422873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural stability and phase transitions in WO3 thin films.
    Ramana CV; Utsunomiya S; Ewing RC; Julien CM; Becker U
    J Phys Chem B; 2006 Jun; 110(21):10430-5. PubMed ID: 16722749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse.
    Nah YC; Paramasivam I; Hahn R; Shrestha NK; Schmuki P
    Nanotechnology; 2010 Mar; 21(10):105704. PubMed ID: 20154369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Zn: WO
    Anusha ; Kumari P; Poornesh P; Chattopadhyay S; Rao A; Kulkarni SD
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemophysical acetylene-sensing mechanisms of Sb
    Kotchasak N; Inyawilert K; Wisitsoraat A; Tuantranont A; Phanichphant S; Channei D; Yordsri V; Liewhiran C
    Phys Chem Chem Phys; 2020 Sep; 22(36):20482-20498. PubMed ID: 32966427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters.
    D'Arienzo M; Armelao L; Mari CM; Polizzi S; Ruffo R; Scotti R; Morazzoni F
    J Am Chem Soc; 2011 Apr; 133(14):5296-304. PubMed ID: 21425840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance.
    Wang Z; Fan X; Han D; Gu F
    Nanoscale; 2016 May; 8(20):10622-31. PubMed ID: 27109698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of SiO2 on the structure-controlled synthesis and magnetic properties of prismatic MnO2 nanorods.
    Toufiq AM; Wang F; Javed QU; Li Y
    Nanotechnology; 2013 Oct; 24(41):415703. PubMed ID: 24045288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Iron as a Dopant on the Refractive Index of WO
    Osiac M; Boerasu I; Radu MS; Jigau M; Tirca I
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on Physico Chemical and X-ray Shielding Performance of Zinc Doped Nano-WO
    Palanisami S; Dhandapani VS; Jayachandran V; Muniappan E; Park D; Kim B; Govindasami K
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity.
    Huang L; Xu H; Li Y; Li H; Cheng X; Xia J; Xu Y; Cai G
    Dalton Trans; 2013 Jun; 42(24):8606-16. PubMed ID: 23629048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sintering temperature on sensing properties of WO
    Lu R; Zhong X; Shang S; Wang S; Tang M
    R Soc Open Sci; 2018 Oct; 5(10):171691. PubMed ID: 30473796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.