BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25580590)

  • 1. Determination of triazole pesticide residues in edible oils using air-assisted liquid-liquid microextraction followed by gas chromatography with flame ionization detection.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    J Sep Sci; 2015 Mar; 38(6):1002-9. PubMed ID: 25580590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations.
    Farajzadeh MA; Djozan D; Mogaddam MR; Bamorowat M
    J Sep Sci; 2011 Jun; 34(11):1309-16. PubMed ID: 21491595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of air-agitated liquid-liquid microextraction technique and conventional dispersive liquid-liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection.
    Farajzadeh MA; Mogaddam MR; Aghdam AA
    J Chromatogr A; 2013 Jul; 1300():70-8. PubMed ID: 23473511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection.
    Mogaddam MR; Farajzadeh MA; Ghorbanpour H
    J Chromatogr A; 2014 Jun; 1347():8-16. PubMed ID: 24819020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-assisted liquid-liquid microextraction method as a novel microextraction technique; application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mogaddam MR
    Anal Chim Acta; 2012 May; 728():31-8. PubMed ID: 22560278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of solid-phase extraction-hollow fiber for ultra-preconcentration of some triazole pesticides followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Khoshmaram L; Mogaddam MR
    J Sep Sci; 2012 Jan; 35(1):121-7. PubMed ID: 22102618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas chromatographic determination of some phenolic compounds in fuels and engine oil after simultaneous derivatization and microextraction.
    Farajzadeh MA; Yadeghari A; Khoshmaram L; Ghorbanpour H
    J Sep Sci; 2014 Oct; 37(20):2966-73. PubMed ID: 25082460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mohebbi A; Feriduni B
    Anal Chim Acta; 2016 May; 920():1-9. PubMed ID: 27114217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction and enrichment of triazole and triazine pesticides from honey using air-assisted liquid-liquid microextraction.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    J Food Sci; 2014 Oct; 79(10):H2140-8. PubMed ID: 25252113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-assisted liquid-liquid microextraction used for the rapid determination of organophosphorus pesticides in juice samples.
    You X; Xing Z; Liu F; Jiang N
    J Chromatogr A; 2013 Oct; 1311():41-7. PubMed ID: 24021833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples.
    Farajzadeh MA; Sattari Dabbagh M; Yadeghari A
    J Sep Sci; 2017 May; 40(10):2253-2260. PubMed ID: 28371329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water.
    Berijani S; Assadi Y; Anbia M; Milani Hosseini MR; Aghaee E
    J Chromatogr A; 2006 Aug; 1123(1):1-9. PubMed ID: 16716329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling stir bar sorptive extraction-dispersive liquid-liquid microextraction for preconcentration of triazole pesticides from aqueous samples followed by GC-FID and GC-MS determinations.
    Farajzadeh MA; Djozan D; Nouri N; Bamorowat M; Shalamzari MS
    J Sep Sci; 2010 Jun; 33(12):1816-28. PubMed ID: 20449842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction and its application on unfiltered samples containing high content of solids.
    Farajzadeh MA; Abbaspour M
    Talanta; 2017 Nov; 174():111-121. PubMed ID: 28738556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a new dispersive liquid-liquid microextraction method in a narrow-bore tube for preconcentration of triazole pesticides from aqueous samples.
    Farajzadeh MA; Djozan D; Khorram P
    Anal Chim Acta; 2012 Feb; 713():70-8. PubMed ID: 22200310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-assisted liquid-liquid extraction coupled with dispersive liquid-liquid microextraction and a drying step for extraction and preconcentration of some phthalate esters from edible oils prior to their determination by GC.
    Khoshmaram L; Abdolmohammad-Zadeh H; Ghaffarzadeh E
    J Sep Sci; 2019 Feb; 42(3):736-743. PubMed ID: 30480371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous derivatization and dispersive liquid-liquid microextraction of anilines in different samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Nouri N
    Talanta; 2012 Sep; 99():1004-10. PubMed ID: 22967655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of fungicides in wine.
    Tseng WC; Chu SP; Kong PH; Huang CK; Chen JH; Chen PS; Huang SD
    J Agric Food Chem; 2014 Sep; 62(37):9059-65. PubMed ID: 25152072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of phthalate esters in cow milk samples using dispersive liquid-liquid microextraction coupled with gas chromatography followed by flame ionization and mass spectrometric detection.
    Farajzadeh MA; Djozan D; Mogaddam MR; Norouzi J
    J Sep Sci; 2012 Mar; 35(5-6):742-9. PubMed ID: 22271644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection: a fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples.
    Farajzadeh MA; Khoshmaram L
    Food Chem; 2013 Dec; 141(3):1881-7. PubMed ID: 23870905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.