These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25580650)

  • 1. Tree physiology and bark beetles.
    Ryan MG; Sapes G; Sala A; Hood SM
    New Phytol; 2015 Feb; 205(3):955-957. PubMed ID: 25580650
    [No Abstract]   [Full Text] [Related]  

  • 2. Do water-limiting conditions predispose Norway spruce to bark beetle attack?
    Netherer S; Matthews B; Katzensteiner K; Blackwell E; Henschke P; Hietz P; Pennerstorfer J; Rosner S; Kikuta S; Schume H; Schopf A
    New Phytol; 2015 Feb; 205(3):1128-1141. PubMed ID: 25417785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.
    Huang J; Kautz M; Trowbridge AM; Hammerbacher A; Raffa KF; Adams HD; Goodsman DW; Xu C; Meddens AJH; Kandasamy D; Gershenzon J; Seidl R; Hartmann H
    New Phytol; 2020 Jan; 225(1):26-36. PubMed ID: 31494935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamical model for bark beetle outbreaks.
    Křivan V; Lewis M; Bentz BJ; Bewick S; Lenhart SM; Liebhold A
    J Theor Biol; 2016 Oct; 407():25-37. PubMed ID: 27396358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought-Mediated Changes in Tree Physiological Processes Weaken Tree Defenses to Bark Beetle Attack.
    Kolb T; Keefover-Ring K; Burr SJ; Hofstetter R; Gaylord M; Raffa KF
    J Chem Ecol; 2019 Oct; 45(10):888-900. PubMed ID: 31493165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus.
    Erbilgin N; Krokene P; Christiansen E; Zeneli G; Gershenzon J
    Oecologia; 2006 Jun; 148(3):426-36. PubMed ID: 16514534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles.
    Raffa KF; Mason CJ; Bonello P; Cook S; Erbilgin N; Keefover-Ring K; Klutsch JG; Villari C; Townsend PA
    Plant Cell Environ; 2017 Sep; 40(9):1791-1806. PubMed ID: 28543133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical and chemical defenses of conifer bark against bark beetles and other pests.
    Franceschi VR; Krokene P; Christiansen E; Krekling T
    New Phytol; 2005 Aug; 167(2):353-75. PubMed ID: 15998390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.
    Zhao T; Axelsson K; Krokene P; Borg-Karlson AK
    J Chem Ecol; 2015 Sep; 41(9):848-52. PubMed ID: 26302987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles.
    Mageroy MH; Christiansen E; Långström B; Borg-Karlson AK; Solheim H; Björklund N; Zhao T; Schmidt A; Fossdal CG; Krokene P
    Plant Cell Environ; 2020 Feb; 43(2):420-430. PubMed ID: 31677172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest.
    Mikkelson KM; Brouillard BM; Bokman CM; Sharp JO
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress.
    Grodzki W; McManus M; Knízek M; Meshkova V; Mihalciuc V; Novotny J; Turcani M; Slobodyan Y
    Environ Pollut; 2004 Jul; 130(1):73-83. PubMed ID: 15046842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of north-central Arizona.
    Hayes CJ; DeGomez TE; Clancy KM; Williams KK; McMillin JD; Anhold JA
    J Econ Entomol; 2008 Aug; 101(4):1253-65. PubMed ID: 18767735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-severity fire increases tree defense against bark beetle attacks.
    Hood S; Sala A; Heyerdahl EK; Boutin M
    Ecology; 2015 Jul; 96(7):1846-55. PubMed ID: 26378307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution pattern of entry holes of the tree-killing bark beetle Polygraphus proximus.
    Takei SY; Köbayashi K; Takagi E
    PLoS One; 2021; 16(2):e0246812. PubMed ID: 33561182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phloeophagous and predaceous insects responding to synthetic pheromones of bark beetles inhabiting white spruce stands in the Great Lakes region.
    Haberkern KE; Raffa KF
    J Chem Ecol; 2003 Jul; 29(7):1651-63. PubMed ID: 12921443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few generalizable patterns of tree-level mortality during extreme drought and concurrent bark beetle outbreaks.
    Reed CC; Hood SM
    Sci Total Environ; 2021 Jan; 750():141306. PubMed ID: 32846245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Styrene, (+)-trans-(1R,4S,5S)-4-Thujanol and Oxygenated Monoterpenes Related to Host Stress Elicit Strong Electrophysiological Responses in the Bark Beetle Ips typographus.
    Schiebe C; Unelius CR; Ganji S; Binyameen M; Birgersson G; Schlyter F
    J Chem Ecol; 2019 Jun; 45(5-6):474-489. PubMed ID: 31053976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ponderosa pine resin defenses and growth: metrics matter.
    Hood S; Sala A
    Tree Physiol; 2015 Nov; 35(11):1223-35. PubMed ID: 26433021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial characterization of bark beetle infestations by a multidate synergy of SPOT and Landsat imagery.
    Latifi H; Schumann B; Kautz M; Dech S
    Environ Monit Assess; 2014 Jan; 186(1):441-56. PubMed ID: 24037227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.