These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25580703)

  • 1. Photoactivable platforms for nitric oxide delivery with fluorescence imaging.
    Fraix A; Sortino S
    Chem Asian J; 2015 May; 10(5):1116-25. PubMed ID: 25580703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototherapeutic Release of Nitric Oxide with Engineered Nanoconstructs.
    Fraix A; Marino N; Sortino S
    Top Curr Chem; 2016; 370():225-57. PubMed ID: 26589511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric Oxide Photoreleasers with Fluorescent Reporting.
    Fraix A; Parisi C; Seggio M; Sortino S
    Chemistry; 2021 Sep; 27(50):12714-12725. PubMed ID: 34143909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-controlled nitric oxide delivering molecular assemblies.
    Sortino S
    Chem Soc Rev; 2010 Aug; 39(8):2903-13. PubMed ID: 20556272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent Nitric Oxide Photodonors Based on BODIPY and Rhodamine Antennae.
    Parisi C; Failla M; Fraix A; Rolando B; Gianquinto E; Spyrakis F; Gazzano E; Riganti C; Lazzarato L; Fruttero R; Gasco A; Sortino S
    Chemistry; 2019 Aug; 25(47):11080-11084. PubMed ID: 31074543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles.
    Kandoth N; Kirejev V; Monti S; Gref R; Ericson MB; Sortino S
    Biomacromolecules; 2014 May; 15(5):1768-76. PubMed ID: 24673610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diaminorhodamine and Light-Activatable NO Donors: Photorelease Quantification and Potential Pitfalls.
    Dranova TY; Vorobev AY; Pisarev EV; Moskalensky AE
    J Fluoresc; 2021 Jan; 31(1):11-16. PubMed ID: 33159280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A host-guest supramolecular complex with photoregulated delivery of nitric oxide and fluorescence imaging capacity in cancer cells.
    Kandoth N; Malanga M; Fraix A; Jicsinszky L; Fenyvesi É; Parisi T; Colao I; Sciortino MT; Sortino S
    Chem Asian J; 2012 Dec; 7(12):2888-94. PubMed ID: 23015376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liposome encapsulation of a photochemical NO precursor for controlled nitric oxide release and simultaneous fluorescence imaging.
    Ostrowski AD; Lin BF; Tirrell MV; Ford PC
    Mol Pharm; 2012 Oct; 9(10):2950-5. PubMed ID: 22953784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal complexes as photochemical nitric oxide precursors: potential applications in the treatment of tumors.
    Ostrowski AD; Ford PC
    Dalton Trans; 2009 Dec; (48):10660-9. PubMed ID: 20023893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel molecular conjugate for the simultaneous DNA oxidation and targeted delivery of nitric oxide triggered by light.
    Bellia G; Vittorino E; Sortino S
    Photochem Photobiol Sci; 2009 Nov; 8(11):1534-8. PubMed ID: 19862411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polymer-based nanodevice for the photoregulated release of NO with two-photon fluorescence reporting in skin carcinoma cells.
    Kirejev V; Kandoth N; Gref R; Ericson MB; Sortino S
    J Mater Chem B; 2014 Mar; 2(9):1190-1195. PubMed ID: 32261355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polychromophoric metal complexes for generating the bioregulatory agent nitric oxide by single- and two-photon excitation.
    Ford PC
    Acc Chem Res; 2008 Feb; 41(2):190-200. PubMed ID: 18181579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging.
    Petryayeva E; Algar WR; Medintz IL
    Appl Spectrosc; 2013 Mar; 67(3):215-52. PubMed ID: 23452487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New biomaterials for the sustained release of nitric oxide: past, present and future.
    Friedman A; Friedman J
    Expert Opin Drug Deliv; 2009 Oct; 6(10):1113-22. PubMed ID: 19663720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of wound repair with a topically applied nitric oxide-releasing polymer.
    Shabani M; Pulfer SK; Bulgrin JP; Smith DJ
    Wound Repair Regen; 1996; 4(3):353-62. PubMed ID: 17177732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress and Promise of Nitric Oxide-Releasing Platforms.
    Yang T; Zelikin AN; Chandrawati R
    Adv Sci (Weinh); 2018 Jun; 5(6):1701043. PubMed ID: 29938181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters.
    Burks PT; Garcia JV; GonzalezIrias R; Tillman JT; Niu M; Mikhailovsky AA; Zhang J; Zhang F; Ford PC
    J Am Chem Soc; 2013 Dec; 135(48):18145-52. PubMed ID: 24245494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles.
    Deniz E; Kandoth N; Fraix A; Cardile V; Graziano AC; Lo Furno D; Gref R; Raymo FM; Sortino S
    Chemistry; 2012 Dec; 18(49):15782-7. PubMed ID: 23108978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-donating materials and their potential in pharmacological applications for site-specific nitric oxide delivery.
    Eroy-Reveles AA; Mascharak PK
    Future Med Chem; 2009 Nov; 1(8):1497-507. PubMed ID: 21426062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.