These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 25580836)
1. Responses of temperate forest productivity to insect and pathogen disturbances. Flower CE; Gonzalez-Meler MA Annu Rev Plant Biol; 2015; 66():547-69. PubMed ID: 25580836 [TBL] [Abstract][Full Text] [Related]
2. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes? Matyssek R; Kozovits AR; Wieser G; King J; Rennenberg H Tree Physiol; 2017 Jun; 37(6):706-732. PubMed ID: 28338970 [TBL] [Abstract][Full Text] [Related]
3. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Ayres MP; Lombardero MJ Sci Total Environ; 2000 Nov; 262(3):263-86. PubMed ID: 11087032 [TBL] [Abstract][Full Text] [Related]
4. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Silva Pedro M; Rammer W; Seidl R Oecologia; 2015 Mar; 177(3):619-630. PubMed ID: 25526843 [TBL] [Abstract][Full Text] [Related]
5. Alteration of forest succession and carbon cycling under elevated CO2. Miller AD; Dietze MC; DeLucia EH; Anderson-Teixeira KJ Glob Chang Biol; 2016 Jan; 22(1):351-63. PubMed ID: 26316364 [TBL] [Abstract][Full Text] [Related]
6. Estimating forest net primary production under changing climate: adding pests into the equation. Pinkard EA; Battaglia M; Roxburgh S; O'Grady AP Tree Physiol; 2011 Jul; 31(7):686-99. PubMed ID: 21746746 [TBL] [Abstract][Full Text] [Related]
7. Predicting global change effects on forest biomass and composition in south-central Siberia. Gustafson EJ; Shvidenko AZ; Sturtevant BR; Scheller RM Ecol Appl; 2010 Apr; 20(3):700-15. PubMed ID: 20437957 [TBL] [Abstract][Full Text] [Related]
8. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Riutta T; Malhi Y; Kho LK; Marthews TR; Huaraca Huasco W; Khoo M; Tan S; Turner E; Reynolds G; Both S; Burslem DFRP; Teh YA; Vairappan CS; Majalap N; Ewers RM Glob Chang Biol; 2018 Jul; 24(7):2913-2928. PubMed ID: 29364562 [TBL] [Abstract][Full Text] [Related]
9. Emergent climate and CO Rollinson CR; Liu Y; Raiho A; Moore DJP; McLachlan J; Bishop DA; Dye A; Matthes JH; Hessl A; Hickler T; Pederson N; Poulter B; Quaife T; Schaefer K; Steinkamp J; Dietze MC Glob Chang Biol; 2017 Jul; 23(7):2755-2767. PubMed ID: 28084043 [TBL] [Abstract][Full Text] [Related]
10. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest. Hubbart JA; Guyette R; Muzika RM Sci Total Environ; 2016 Oct; 566-567():463-467. PubMed ID: 27232973 [TBL] [Abstract][Full Text] [Related]
11. Managing for the unexpected: Building resilient forest landscapes to cope with global change. Mina M; Messier C; Duveneck MJ; Fortin MJ; Aquilué N Glob Chang Biol; 2022 Jul; 28(14):4323-4341. PubMed ID: 35429213 [TBL] [Abstract][Full Text] [Related]
12. Altered dynamics of forest recovery under a changing climate. Anderson-Teixeira KJ; Miller AD; Mohan JE; Hudiburg TW; Duval BD; Delucia EH Glob Chang Biol; 2013 Jul; 19(7):2001-21. PubMed ID: 23529980 [TBL] [Abstract][Full Text] [Related]
13. Shifts in tree functional composition amplify the response of forest biomass to climate. Zhang T; Niinemets Ü; Sheffield J; Lichstein JW Nature; 2018 Apr; 556(7699):99-102. PubMed ID: 29562235 [TBL] [Abstract][Full Text] [Related]
14. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape. Bähner KW; Zweig KA; Leal IR; Wirth R Bull Entomol Res; 2017 Oct; 107(5):563-572. PubMed ID: 28185607 [TBL] [Abstract][Full Text] [Related]
15. Stand age diversity (and more than climate change) affects forests' resilience and stability, although unevenly. Vangi E; Dalmonech D; Cioccolo E; Marano G; Bianchini L; Puchi PF; Grieco E; Cescatti A; Colantoni A; Chirici G; Collalti A J Environ Manage; 2024 Aug; 366():121822. PubMed ID: 39018839 [TBL] [Abstract][Full Text] [Related]
16. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Kautz M; Anthoni P; Meddens AJH; Pugh TAM; Arneth A Glob Chang Biol; 2018 May; 24(5):2079-2092. PubMed ID: 29105233 [TBL] [Abstract][Full Text] [Related]
17. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing. Andrus RA; Hart SJ; Veblen TT Ecology; 2020 May; 101(5):e02998. PubMed ID: 32012254 [TBL] [Abstract][Full Text] [Related]
18. A synthesis of current knowledge on forests and carbon storage in the United States. McKinley DC; Ryan MG; Birdsey RA; Giardina CP; Harmon ME; Heath LS; Houghton RA; Jackson RB; Morrison JF; Murray BC; Patakl DE; Skog KE Ecol Appl; 2011 Sep; 21(6):1902-24. PubMed ID: 21939033 [TBL] [Abstract][Full Text] [Related]
19. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Wang S; Zhou L; Chen J; Ju W; Feng X; Wu W J Environ Manage; 2011 Jun; 92(6):1651-62. PubMed ID: 21339040 [TBL] [Abstract][Full Text] [Related]
20. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Fekete I; Lajtha K; Kotroczó Z; Várbíró G; Varga C; Tóth JA; Demeter I; Veperdi G; Berki I Glob Chang Biol; 2017 Aug; 23(8):3154-3168. PubMed ID: 28222248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]