BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25580878)

  • 1. Uranium phosphate biomineralization by fungi.
    Liang X; Hillier S; Pendlowski H; Gray N; Ceci A; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2064-75. PubMed ID: 25580878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.
    Liang X; Csetenyi L; Gadd GM
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5141-51. PubMed ID: 26846744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatase-mediated bioprecipitation of lead by soil fungi.
    Liang X; Kierans M; Ceci A; Hillier S; Gadd GM
    Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.
    Newsome L; Morris K; Lloyd JR
    PLoS One; 2015; 10(7):e0132392. PubMed ID: 26132209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite.
    Zheng XY; Wang XY; Shen YH; Lu X; Wang TS
    Chemosphere; 2017 May; 175():161-169. PubMed ID: 28211330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopic study of the uranyl minerals vanmeersscheite U(OH)4[(UO2)3(PO4)2(OH)2].4H2O and arsenouranylite Ca(UO2)[(UO2)3(AsO4)2(OH)2].(OH)2.6H2O.
    Frost RL; Cejka J; Dickfos MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1799-803. PubMed ID: 18691935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation.
    Kulkarni S; Misra CS; Gupta A; Ballal A; Apte SK
    Appl Environ Microbiol; 2016 Aug; 82(16):4965-74. PubMed ID: 27287317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolved Carbonate and pH Control the Dissolution of Uranyl Phosphate Minerals in Flow-Through Porous Media.
    Reinoso-Maset E; Perdrial N; Steefel CI; Um W; Chorover J; O'Day PA
    Environ Sci Technol; 2020 May; 54(10):6031-6042. PubMed ID: 32364719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of struvite by Aspergillus niger: phosphate release and magnesium biomineralization as glushinskite.
    Suyamud B; Ferrier J; Csetenyi L; Inthorn D; Gadd GM
    Environ Microbiol; 2020 Apr; 22(4):1588-1602. PubMed ID: 32079035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal transformation of metallic lead to pyromorphite in liquid medium.
    Rhee YJ; Hillier S; Pendlowski H; Gadd GM
    Chemosphere; 2014 Oct; 113():17-21. PubMed ID: 25065784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal transformations of uranium oxides.
    Fomina M; Charnock JM; Hillier S; Alvarez R; Gadd GM
    Environ Microbiol; 2007 Jul; 9(7):1696-710. PubMed ID: 17564604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium bioprecipitation mediated by a phosphate-solubilizing Enterobacter sp. N1-10 and remediation of uranium-contaminated soil.
    Yu X; Xiong F; Zhou C; Luo Z; Zhou Z; Chen J; Sun K
    Sci Total Environ; 2024 Jan; 906():167688. PubMed ID: 37820798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational spectroscopy of synthetic analogues of ankoleite, chernikovite and intermediate solid solution.
    Clavier N; Crétaz F; Szenknect S; Mesbah A; Poinssot C; Descostes M; Dacheux N
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():143-50. PubMed ID: 26688205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp. : a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation.
    Macaskie LE; Bonthrone KM; Yong P; Goddard DT
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1855-1867. PubMed ID: 10931890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes.
    Sousa T; Chung AP; Pereira A; Piedade AP; Morais PV
    Metallomics; 2013 Apr; 5(4):390-7. PubMed ID: 23487302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens.
    Khijniak TV; Slobodkin AI; Coker V; Renshaw JC; Livens FR; Bonch-Osmolovskaya EA; Birkeland NK; Medvedeva-Lyalikova NN; Lloyd JR
    Appl Environ Microbiol; 2005 Oct; 71(10):6423-6. PubMed ID: 16204572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products.
    Rui X; Kwon MJ; O'Loughlin EJ; Dunham-Cheatham S; Fein JB; Bunker B; Kemner KM; Boyanov MI
    Environ Sci Technol; 2013 Jun; 47(11):5668-78. PubMed ID: 23634690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions.
    Chandwadkar P; Misra HS; Acharya C
    Metallomics; 2018 Aug; 10(8):1078-1088. PubMed ID: 29999065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotic dissolution of autunite under anaerobic conditions: effect of bicarbonates and Shewanella oneidensis MR1 microbial activity.
    Anagnostopoulos V; Katsenovich Y; Lee B; Lee HM
    Environ Geochem Health; 2020 Aug; 42(8):2547-2556. PubMed ID: 31858357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial-facilitated uranium transport in the presence of phytate at Savannah River Site.
    Li R; Ibeanusi V; Hoyle-Gardner J; Crandall C; Jagoe C; Seaman J; Anandhi A; Chen G
    Chemosphere; 2019 May; 223():351-357. PubMed ID: 30784741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.