BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 25581316)

  • 1. Crop yield response to climate change varies with cropping intensity.
    Challinor AJ; Parkes B; Ramirez-Villegas J
    Glob Chang Biol; 2015 Apr; 21(4):1679-88. PubMed ID: 25581316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.
    Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.
    Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change impacts on crop yield: evidence from China.
    Wei T; Cherry TL; Glomrød S; Zhang T
    Sci Total Environ; 2014 Nov; 499():133-40. PubMed ID: 25181045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed.
    Duku C; Zwart SJ; Hein L
    PLoS One; 2018; 13(3):e0192642. PubMed ID: 29513753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.
    Dixit PN; Telleria R
    Sci Total Environ; 2015 Apr; 511():562-75. PubMed ID: 25590537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent changes in county-level maize production in the United States: Spatial-temporal patterns, climatic drivers and the implications for crop modelling.
    Leng G; Peng J; Huang S
    Sci Total Environ; 2019 Oct; 686():819-827. PubMed ID: 31195289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.
    Rial-Lovera K; Davies WP; Cannon ND
    J Sci Food Agric; 2017 Jan; 97(1):17-32. PubMed ID: 27103504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characteristics of seasonal drought and its adaptation in southern China under the background of global climate change. VI. Optimized layout of cropping system for preventing and avoiding drought disaster].
    Sui Y; Huang WH; Yang XG; Li MS
    Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3192-8. PubMed ID: 24564149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary.
    Li S; Juhász-Horváth L; Pintér L; Rounsevell MDA; Harrison PA
    Sci Total Environ; 2018 May; 622-623():1611-1620. PubMed ID: 29054621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide.
    Alexander P; Rabin S; Anthoni P; Henry R; Pugh TAM; Rounsevell MDA; Arneth A
    Glob Chang Biol; 2018 Jul; 24(7):2791-2809. PubMed ID: 29485759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop yield response to climate change varies with crop spatial distribution pattern.
    Leng G; Huang M
    Sci Rep; 2017 May; 7(1):1463. PubMed ID: 28469171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change and maize yield in southern Africa: what can farm management do?
    Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE
    Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins.
    van der Fels-Klerx HJ; Olesen JE; Naustvoll LJ; Friocourt Y; Mengelers MJ; Christensen JH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1647-59. PubMed ID: 22891967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.