BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25581641)

  • 1. Enhancing Phytoremediation Potential of Pennisetum clandestinum Hochst in Cadmium-Contaminated Soil Using Smoke-Water and Smoke-Isolated Karrikinolide.
    Okem A; Kulkarni MG; Van Staden J
    Int J Phytoremediation; 2015; 17(11):1046-52. PubMed ID: 25581641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet.
    Firdaus-e-Bareen ; Shafiq M; Jamil S
    J Hazard Mater; 2012 Oct; 237-238():186-93. PubMed ID: 22959131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient.
    Hu L; Wang R; Liu X; Xu B; Xie T; Li Y; Wang M; Wang G; Chen Y
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21671-21681. PubMed ID: 29785604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytokinin profiles in ex vitro acclimatized Eucomis autumnalis plants pre-treated with smoke-derived karrikinolide.
    Aremu AO; Plačková L; Novák O; Stirk WA; Doležal K; Van Staden J
    Plant Cell Rep; 2016 Jan; 35(1):227-38. PubMed ID: 26521209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent.
    Ali N; Hadi F
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13305-18. PubMed ID: 25940488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer.
    Kamal N; Liu Z; Qian C; Wu J; Zhong X
    Microbiol Res; 2021 Jan; 242():126594. PubMed ID: 33007635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.
    Cui H; Fan Y; Yang J; Xu L; Zhou J; Zhu Z
    Chemosphere; 2016 Oct; 161():233-241. PubMed ID: 27434253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching Behaviour and Enhanced Phytoextraction of Additives for Cadmium-Contaminated Soil by Pennisetum sp.
    Li F; Zhang Y; Hao S; Xu W; Shen K; Long Z
    Bull Environ Contam Toxicol; 2020 May; 104(5):658-667. PubMed ID: 32322932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators.
    Chen L; Long C; Wang D; Yang J
    Chemosphere; 2020 Mar; 242():125112. PubMed ID: 31669993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil.
    Chouychai W; Kruatrachue M; Lee H
    Int J Phytoremediation; 2015; 17(11):1053-9. PubMed ID: 25985054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of Dysphania ambrosioides (L.) Mosyakin & Clemants in a Cd-spiked soil.
    Jan AU; Hadi F; Shah A; Ditta A; Nawaz MA; Tariq M
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43417-43430. PubMed ID: 33830421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula.
    Sun Y; Xu Y; Zhou Q; Wang L; Lin D; Liang X
    J Environ Manage; 2013 Jan; 114():202-8. PubMed ID: 23219334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irrigating digestate to improve cadmium phytoremediation potential of Pennisetum hybridum.
    He L; Zhu Q; Wang Y; Chen C; He M; Tan F
    Chemosphere; 2021 Sep; 279():130592. PubMed ID: 34134411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrazine and simazine degradation in Pennisetum rhizosphere.
    Singh N; Megharaj M; Kookana RS; Naidu R; Sethunathan N
    Chemosphere; 2004 Jul; 56(3):257-63. PubMed ID: 15172598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential use of king grass (Pennisetum purpureum Schumach. × Pennisetum glaucum (L.) R.Br.) for phytoextraction of cadmium from fields.
    Zhou Z; Guo Y; Hu L; He L; Xu B; Huang Z; Wang G; Chen Y
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35249-35260. PubMed ID: 32592057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).
    Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z
    Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon Amendment Reduces Soil Cd Availability and Cd Uptake of Two
    Dong Q; Fang J; Huang F; Cai K
    Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31075897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction.
    Weyens N; Gielen M; Beckers B; Boulet J; van der Lelie D; Taghavi S; Carleer R; Vangronsveld J
    Plant Biol (Stuttg); 2014 Sep; 16(5):988-96. PubMed ID: 24400887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families.
    Kumari A; Papenfus HB; Kulkarni MG; Pošta M; Van Staden J
    Plant Biol (Stuttg); 2015 Jul; 17(4):825-30. PubMed ID: 25545791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.