These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 25581641)
1. Enhancing Phytoremediation Potential of Pennisetum clandestinum Hochst in Cadmium-Contaminated Soil Using Smoke-Water and Smoke-Isolated Karrikinolide. Okem A; Kulkarni MG; Van Staden J Int J Phytoremediation; 2015; 17(11):1046-52. PubMed ID: 25581641 [TBL] [Abstract][Full Text] [Related]
2. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. Firdaus-e-Bareen ; Shafiq M; Jamil S J Hazard Mater; 2012 Oct; 237-238():186-93. PubMed ID: 22959131 [TBL] [Abstract][Full Text] [Related]
3. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. Hu L; Wang R; Liu X; Xu B; Xie T; Li Y; Wang M; Wang G; Chen Y Environ Sci Pollut Res Int; 2018 Aug; 25(22):21671-21681. PubMed ID: 29785604 [TBL] [Abstract][Full Text] [Related]
4. Cytokinin profiles in ex vitro acclimatized Eucomis autumnalis plants pre-treated with smoke-derived karrikinolide. Aremu AO; Plačková L; Novák O; Stirk WA; Doležal K; Van Staden J Plant Cell Rep; 2016 Jan; 35(1):227-38. PubMed ID: 26521209 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Ali N; Hadi F Environ Sci Pollut Res Int; 2015 Sep; 22(17):13305-18. PubMed ID: 25940488 [TBL] [Abstract][Full Text] [Related]
6. Improving hybrid Pennisetum growth and cadmium phytoremediation potential by using Bacillus megaterium BM18-2 spores as biofertilizer. Kamal N; Liu Z; Qian C; Wu J; Zhong X Microbiol Res; 2021 Jan; 242():126594. PubMed ID: 33007635 [TBL] [Abstract][Full Text] [Related]
7. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil. Cui H; Fan Y; Yang J; Xu L; Zhou J; Zhu Z Chemosphere; 2016 Oct; 161():233-241. PubMed ID: 27434253 [TBL] [Abstract][Full Text] [Related]
8. Leaching Behaviour and Enhanced Phytoextraction of Additives for Cadmium-Contaminated Soil by Pennisetum sp. Li F; Zhang Y; Hao S; Xu W; Shen K; Long Z Bull Environ Contam Toxicol; 2020 May; 104(5):658-667. PubMed ID: 32322932 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chen L; Long C; Wang D; Yang J Chemosphere; 2020 Mar; 242():125112. PubMed ID: 31669993 [TBL] [Abstract][Full Text] [Related]
10. Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil. Chouychai W; Kruatrachue M; Lee H Int J Phytoremediation; 2015; 17(11):1053-9. PubMed ID: 25985054 [TBL] [Abstract][Full Text] [Related]
11. Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of Dysphania ambrosioides (L.) Mosyakin & Clemants in a Cd-spiked soil. Jan AU; Hadi F; Shah A; Ditta A; Nawaz MA; Tariq M Environ Sci Pollut Res Int; 2021 Aug; 28(32):43417-43430. PubMed ID: 33830421 [TBL] [Abstract][Full Text] [Related]
12. The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula. Sun Y; Xu Y; Zhou Q; Wang L; Lin D; Liang X J Environ Manage; 2013 Jan; 114():202-8. PubMed ID: 23219334 [TBL] [Abstract][Full Text] [Related]
13. Irrigating digestate to improve cadmium phytoremediation potential of Pennisetum hybridum. He L; Zhu Q; Wang Y; Chen C; He M; Tan F Chemosphere; 2021 Sep; 279():130592. PubMed ID: 34134411 [TBL] [Abstract][Full Text] [Related]
14. Atrazine and simazine degradation in Pennisetum rhizosphere. Singh N; Megharaj M; Kookana RS; Naidu R; Sethunathan N Chemosphere; 2004 Jul; 56(3):257-63. PubMed ID: 15172598 [TBL] [Abstract][Full Text] [Related]
15. Potential use of king grass (Pennisetum purpureum Schumach. × Pennisetum glaucum (L.) R.Br.) for phytoextraction of cadmium from fields. Zhou Z; Guo Y; Hu L; He L; Xu B; Huang Z; Wang G; Chen Y Environ Sci Pollut Res Int; 2020 Oct; 27(28):35249-35260. PubMed ID: 32592057 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.). Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531 [TBL] [Abstract][Full Text] [Related]
17. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. Lehmann C; Rebele F Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982 [TBL] [Abstract][Full Text] [Related]
18. Silicon Amendment Reduces Soil Cd Availability and Cd Uptake of Two Dong Q; Fang J; Huang F; Cai K Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31075897 [TBL] [Abstract][Full Text] [Related]
19. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Weyens N; Gielen M; Beckers B; Boulet J; van der Lelie D; Taghavi S; Carleer R; Vangronsveld J Plant Biol (Stuttg); 2014 Sep; 16(5):988-96. PubMed ID: 24400887 [TBL] [Abstract][Full Text] [Related]
20. Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families. Kumari A; Papenfus HB; Kulkarni MG; Pošta M; Van Staden J Plant Biol (Stuttg); 2015 Jul; 17(4):825-30. PubMed ID: 25545791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]