BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25581754)

  • 1. Enzymatic control of cysteinyl thiol switches in proteins.
    Deponte M; Lillig CH
    Biol Chem; 2015 May; 396(5):401-13. PubMed ID: 25581754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence and physiological relevance of protein thiol switches.
    Leichert LI; Dick TP
    Biol Chem; 2015 May; 396(5):389-99. PubMed ID: 25719318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-disulfide exchange in signaling: disulfide bonds as a switch.
    Messens J; Collet JF
    Antioxid Redox Signal; 2013 May; 18(13):1594-6. PubMed ID: 23330837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol switches in mitochondria: operation and physiological relevance.
    Riemer J; Schwarzländer M; Conrad M; Herrmann JM
    Biol Chem; 2015 May; 396(5):465-82. PubMed ID: 25720067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of thiol-based redox switch processes in parasites - facts and future.
    Rahbari M; Diederich K; Becker K; Krauth-Siegel RL; Jortzik E
    Biol Chem; 2015 May; 396(5):445-63. PubMed ID: 25741735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cysteine residues as redox-sensitive regulatory switches.
    Barford D
    Curr Opin Struct Biol; 2004 Dec; 14(6):679-86. PubMed ID: 15582391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A direct way of redox sensing.
    Benoit R; Auer M
    RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
    Nagahara N
    Amino Acids; 2011 Jun; 41(1):59-72. PubMed ID: 20177947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-based redox switches and gene regulation.
    Antelmann H; Helmann JD
    Antioxid Redox Signal; 2011 Mar; 14(6):1049-63. PubMed ID: 20626317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-based regulatory switches.
    Paget MS; Buttner MJ
    Annu Rev Genet; 2003; 37():91-121. PubMed ID: 14616057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-based redox signalling: rust never sleeps.
    Wouters MA; Iismaa S; Fan SW; Haworth NL
    Int J Biochem Cell Biol; 2011 Aug; 43(8):1079-85. PubMed ID: 21513814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox sensing by proteins: oxidative modifications on cysteines and the consequent events.
    Wang Y; Yang J; Yi J
    Antioxid Redox Signal; 2012 Apr; 16(7):649-57. PubMed ID: 21967570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Redox modifications of cysteine residues in plant proteins].
    Szworst-Łupina D; Rusinowski Z; Zagdańska B
    Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors.
    Lee SJ; Kim DG; Lee KY; Koo JS; Lee BJ
    Arch Pharm Res; 2018 Jun; 41(6):583-593. PubMed ID: 29777359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species.
    Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A
    J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteinyl and methionyl redox switches: Structural prerequisites and consequences.
    Bodnar Y; Lillig CH
    Redox Biol; 2023 Sep; 65():102832. PubMed ID: 37536083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-catalyzed oxidation of protein-bound dopamine.
    Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K
    Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.