BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25581754)

  • 21. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small Molecules Govern Thiol Redox Switches.
    Knuesting J; Scheibe R
    Trends Plant Sci; 2018 Sep; 23(9):769-782. PubMed ID: 30149854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thiol-based redox switches in eukaryotic proteins.
    Brandes N; Schmitt S; Jakob U
    Antioxid Redox Signal; 2009 May; 11(5):997-1014. PubMed ID: 18999917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiol-based redox switches.
    Groitl B; Jakob U
    Biochim Biophys Acta; 2014 Aug; 1844(8):1335-43. PubMed ID: 24657586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress.
    Dietz KJ; Hell R
    Biol Chem; 2015 May; 396(5):483-94. PubMed ID: 25741945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of signal transduction through protein cysteine oxidation.
    Cross JV; Templeton DJ
    Antioxid Redox Signal; 2006; 8(9-10):1819-27. PubMed ID: 16987034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological redox switches.
    Palumaa P
    Antioxid Redox Signal; 2009 May; 11(5):981-3. PubMed ID: 19186997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiol-based redox switches in prokaryotes.
    Hillion M; Antelmann H
    Biol Chem; 2015 May; 396(5):415-44. PubMed ID: 25720121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox signaling and the emerging therapeutic potential of thiol antioxidants.
    Sen CK
    Biochem Pharmacol; 1998 Jun; 55(11):1747-58. PubMed ID: 9714292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidant enzymes as redox-based biomarkers: a brief review.
    Yang HY; Lee TH
    BMB Rep; 2015 Apr; 48(4):200-8. PubMed ID: 25560698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signaling functions of reactive oxygen species.
    Forman HJ; Maiorino M; Ursini F
    Biochemistry; 2010 Feb; 49(5):835-42. PubMed ID: 20050630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Redox in Signal Transduction.
    Hancock JT
    Methods Mol Biol; 2019; 1990():1-11. PubMed ID: 31148058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Under the ROS…thiol network is the principal suspect for autophagy commitment.
    Filomeni G; Desideri E; Cardaci S; Rotilio G; Ciriolo MR
    Autophagy; 2010 Oct; 6(7):999-1005. PubMed ID: 20639698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology.
    Lorenzen I; Eble JA; Hanschmann EM
    Biol Chem; 2021 Feb; 402(3):253-269. PubMed ID: 33108336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.