These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25581787)

  • 21. Mapping of proteomic composition on the surfaces of bacillus spores by atomic force microscopy-based immunolabeling.
    Plomp M; Malkin AJ
    Langmuir; 2009 Jan; 25(1):403-9. PubMed ID: 19063625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro high-resolution structural dynamics of single germinating bacterial spores.
    Plomp M; Leighton TJ; Wheeler KE; Hill HD; Malkin AJ
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9644-9. PubMed ID: 17535925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elasticity and nanomechanical response of Aspergillus niger spores using atomic force microscopy.
    Fang TH; Kang SH; Hong ZH; Wu CD
    Micron; 2012 Feb; 43(2-3):407-11. PubMed ID: 22051088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and properties of pili from spores of Bacillus cereus.
    DesRosier JP; Lara JC
    J Bacteriol; 1981 Jan; 145(1):613-9. PubMed ID: 6109707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical basis for the adaptive flexibility of Bacillus spore coats.
    Sahin O; Yong EH; Driks A; Mahadevan L
    J R Soc Interface; 2012 Nov; 9(76):3156-60. PubMed ID: 22859568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal effects on surface structures and properties of Bacillus anthracis spores on nanometer scales.
    Li AG; Xing Y; Burggraf LW
    Langmuir; 2013 Jul; 29(26):8343-54. PubMed ID: 23742662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Structural and biochemical changes in the spores of Bacillus cereus exposed to caustic soda and hypochlorite].
    KulikovskiÄ­ AV
    Mikrobiologiia; 1976; 45(1):128-32. PubMed ID: 820941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review).
    Andryukov BG; Karpenko AA; Lyapun IN
    Sovrem Tekhnologii Med; 2021; 12(3):105-122. PubMed ID: 34795986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of broth-cultured Bacillus atrophaeus and Bacillus cereus spores.
    Buhr TL; McPherson DC; Gutting BW
    J Appl Microbiol; 2008 Nov; 105(5):1604-13. PubMed ID: 19146496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the exosporium of Bacillus cereus.
    Charlton S; Moir AJ; Baillie L; Moir A
    J Appl Microbiol; 1999 Aug; 87(2):241-5. PubMed ID: 10475957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of metabisulphite on sporulation and alkaline phosphatase in Bacillus subtilis and Bacillus cereus.
    Abalaka JA; Oloyede OB
    Microbios; 1990; 63(256-257):173-86. PubMed ID: 2122190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of cellular differentiation on ultraviolet induced DNA damage and its repair mechanisms in B. cereus.
    Kamat AS; Pradhan DS
    Indian J Biochem Biophys; 1991 Apr; 28(2):83-92. PubMed ID: 1908819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Internal Hydration Properties of Single Bacterial Endospores Probed by Electrostatic Force Microscopy.
    Van Der Hofstadt M; Fabregas R; Millan-Solsona R; Juarez A; Fumagalli L; Gomila G
    ACS Nano; 2016 Dec; 10(12):11327-11336. PubMed ID: 28024372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment.
    Tauveron G; Slomianny C; Henry C; Faille C
    Int J Food Microbiol; 2006 Aug; 110(3):254-62. PubMed ID: 16793156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Identification of Clinical Isolates of the Bacillus cereus Group and Their Characterization by Mass Spectrometry and Electron Microscopy].
    Smirnova TA; Karpov NBPDS; Solovyev AI; Shevlyagina NV; Andreevskaya SG; Shcherbinin DN; Plieva ZS; Kozlova VA; Pereborova AA; Bogdanov IA; Grumov DA; Zubasheva MV; Poddubko SV; Grechnikov AA; Sukhina MA; Zhukhovitsky VG
    Mol Biol (Mosk); 2023; 57(4):609-622. PubMed ID: 37528781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy.
    Li AG; Burggraf LW; Xing Y
    Appl Environ Microbiol; 2016 May; 82(10):2988-2999. PubMed ID: 26969703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages.
    Ramarao N; Lereclus D
    Cell Microbiol; 2005 Sep; 7(9):1357-64. PubMed ID: 16098222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Electron microscopic study of normal Bacillus anthracoides spores and after exposure to a chloroactive disinfectant].
    Galanina LA; Mitiushina LL; Duda VI; Bekhtereva MN
    Mikrobiologiia; 1979; 48(3):470-5. PubMed ID: 224288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new test of differentiation of Bacillus cereus and Bacillus anthracis based on the existence of spore appendages.
    Hachisuka Y; Kozuka S
    Microbiol Immunol; 1981; 25(11):1201-7. PubMed ID: 6799753
    [No Abstract]   [Full Text] [Related]  

  • 40. Absence of oxygen affects the capacity to sporulate and the spore properties of Bacillus cereus.
    Abbas AA; Planchon S; Jobin M; Schmitt P
    Food Microbiol; 2014 Sep; 42():122-31. PubMed ID: 24929727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.